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EXPLAINING INVESTMENT DYNAMICS IN U.S. 
MANUFACTURING: A GENERALIZED (5, s) APPROACH 

BY RICARDO J. CABALLERO AND EDUARDO M. R. A ENGEL1 

In this paper we detive a model of aggtegate investment that builds ftom the lumpy 
mictoeconomic behavim of firms faclng <;tocltasttc fixrd adjustment co;ts Instead of tile 
standatd sharp (S,s) bands, firms' adjustment policies take the fotm of a ptobability of 
adJUStment (ad,usmle11t h<~lmd) that rcosponds smoothly to d1<1nges in firms" capacity gap. 
The model has appealing aggregation pwperties. and yields nonlinear aggt~gate time 
senes processes. Tlw p<rsoivity of normal times is, occasionally, more than offset by the 
bnsk response to large accumulated shoe b. Using within and out-of-~ample cute11a. we 
find that the model performs substnntially better thatl the st<tndard lmear models of 
mve~tment fot po;twar ~ectoral U.S. manufacturing equipment and stt·uctlues investment 
data. 

KEYWORDS: Investment. adjustment costs, adjustment hazard. aggregation, lwteroglOnc· 
1ty. lumpiness. nonlinear ttme series. 

1. INTRODUCTION 

Minor upgrades and repairs aside, mvestmer:tt projects at the plant level are 
intermittent and lumpy rather than smooth. This is starkly documented in Dams 
and Dunne (1993). They use the Longitudinal Research Datafile to study the 
investment behavior of 12,000 continmng (.and large) U.S. manufacturing estab
lishments for the seventeen year period from 1972-1988, and find that: (i) more 
than half of the establishments exhibit capital growth dose to 50 percent in a 
single year, and (ii) over 25 percent and perhaps as much as 40 percent, of an 
average plant's gross investment over the seventeen year period is concentrated 
in a single yearjproject 2·' 

Since this basic feature of microeconomic data is seldom considered in 
empirical investment equations, it perhaps should come as no surprise that 
success in estimatwg and testmg investment equations LS so rare.+ At a broad 
level, our goal in this paper is to develop and test a framework to study the 
dynamic behavtor of aggregate investment, subject to the constraint that it 

'We ate g1ateful to Oliviet Blanchard. Whitney Newey, James Stock, an cditm, three anonymom 
referees, and semin<ll parl!c1pants at Bwwn. CEPR·Champoussm, Clucago, CollHnb1a. Econometuc 
Society Meetings (Ca1acas and Tok-yo), EFCC Harvard, IMPA LSE, NBER, Pnnceton, Rochester. 
SITE, Toronto, U. de Chile, and Yale for their comments. Financial suppmt (to Caballe1ol f1om the 
National Science and Sloan FoundatiOns and (to Engel) ft·om FONDECYT(Grant 195-,~!0l and the 
Mellon Foundation (Grant 9608) h gratefully acknowledged. 

'S!llce plants" entry !S excluded f10m thei1 sample, these statistics me ltkcly to rep1esent lower 
bcmnds on tile deg1ee of lumpiness 111 pla1Hs' investment patterns. 

·'We use tile word "ptoject" to emphntze the fact that the actual unplemmtation of a ptOJect 
may cover more than a year-oboervation; rcaltstic time-to-l1utld aspects of tnvestment are not in 
contrad!Ctton W1tl1 the v1ew that !llVestment ep1;ode~ .are lumpy in natut·e 

4 See Chirinko (!994) for a smvey of the empirical investment literatu1e. 
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builds up from microeconomic units generating the lumpy and intermittent 
pattern observed in microeconomic data. 

Achieving such a goal requires three methodological ingredients: (i) a micro
economic model of lumpy adjustment; (ii) an aggregation procedure; and (iii) an 
estimation and testing method that is not only consistent with (i) and (ii), but 
also able to highlight the impact of the proposed microeconomic model on 
aggregate dynamics. 

As in the standard (S, s) literature, our microeconomic model generates 
lumpy behavior through the presence of a fixed cost of adjusting the firm's 
capital stock. Unlike this literature, the fixed cost is random so the "inaction 
range" is no longer fixed over time (and across firms). The optimal policy still 
takes a simple form under standard assumptions about the stochastic process of 
exogenous variables: let z denote the log-difference between a firm's actual and 
frictionless (i.e., in the absence of adjustment cost) stock of capital, and let w be 
a random variable indexing the adjustment cost faced by the firm at some point 
in time, with distribution G(w). The solution to the firm's problem yields a 
function [l(z) that represents the maximum realization of w for which a firm 
with imbalance z chooses not to adjust. For any smaller w, firms adjust fully. 
Removing conditioning on w, on the other hand, yields an adjustment hazard 
function A(z) that describes the probability that a firm with imbalance z adjusts. 
Since it varies smoothly with z, this probabilistic (S,s)-type rule is more 
amenable to aggregation than the standard fixed-bands (S, s) model and, more 
importantly, has the virtue of nesting a wide variety of models. At the extremes, 
when G(w) degenerates into a sPike we recover the (S, s) model, while when it 
becomes a distribution with plenty of mass at very low values of w and the 
remaining mass at very high adjustment costs, we approximately recover a model 
with linear aggregate dynamics (the standard partial adjustment model). 

Firms' actions are not perfectly synchronized. On one hand, at any point in 
time adjustment costs differ across firms. On the other, differences in initial 
conditions, idiosyncratic shocks, and previous actions, yield a nondegenerate 
cross-sectional density of capital imbalances, j(z, t), at all times. Aggregation 
proceeds in two steps, both under the assumption of a large number of firms: 
First, withm each z, the microeconomic adjustment hazard now represents the 
fraction of units with that imbalance that choose to adjust at any given moment 
in time. Second, to obtain aggregate investment we integrate these adjustments 
across z, using as measure the current cross-sectional density. In order to 
describe the dynamic path of aggregate investment we characterize the path of 
f(z, t) which, under our assumptions, is Markovian with a transition operator 
that depends on the realization of aggregate shocks. 

We make (fairly flexible) distributional assumptions about aggregate shocks 
and estimate the model by Maximum Likelihood using (aggregate) two-digit U.S. 
manufacturing investment/capital ratios for the period 1948-1992. We find 
clear evidence in favor of our generalized (S, s) model, both in terms of within 
sample criteria and out-of-sample predictive power. Our structural interpreta
tion of these nonlinearities indicates that fixed adjustment costs faced by firms 
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are large. Although important for both, these featnres are more pronounced for 
structures than equipment. When compared with standard linear models, the 
forecasting accuracy of the model we postulate is substantially improved. 

One of the main mechanisms by which aggregate dynamics generated by the 
(S, s) type model differ from their linear counterparts, is that the number of 
active firms changes over the cycle-a point emphasized by Bar-Ilan and 
Blinder (1992). Dams and Dunne (1993) confirm the importance of this mecha
nism by showing that the number of plants going through their prima1y invest
ment spikes, rather than the average size of these spikes, tracks closely aggre
gate manufacturing investment over time. Consistently, and depending on the 
specific sequence of preceding events, the nonlinear model we estimate has the 
potential to generate brisker expansions than its linear counterparts. It is also 
this feature that largely explains its enhanced forecasting properties. 

Beyond the empirical findings on investment and its integrative nature, this 
paper has two specific methodological contributions to the new literature on 
nonconvex adjustment costs and lumpy actions. 

On the microeconomic side, there have been several developments on models 
of lumpy and intermittent adjustment (the (S, s) literatureV As we discussed 
above, here we extend these models so the adjustment trigger barriers vary 
randomly across firms and for a finn over time. This modification is a first step 
toward introducing the realistic and empiricalty important feature that units do 
not always wait for the same stock disequilibrium to adjust, and that adjustments 
are not always of the same size across firms and for the same firm over time, 
while preserving a fairly parsimonious aggregation setup. 

More recently, there have also been developments of empirical models of 
aggregate dynamics with heterogeneous microeconomic units adjusting intermit
tently.0 Econometric implementation of these models, however, has required 
observing (or estimating separately in an often debatable first stage) a measure 
of the exogenous component of the aggregate driving force. Our nonlinear time 
series procedure does not require the first stage; it only requires information on 
the aggregate investment series itself and on the generating process of the 
driving force (but not its realization). Somewhat analogously with the standard 

5 See Harrison, Selke, and Taylor 0983) for a tecl1nical dtscussion of impulse conuol p!Oblems. 
For a good survey of the economics !iter~ture-although Wtth an emphasts on models wher·e 
investmerH is infrequent but not lumpy-see Dixit and Pindyck (1994). More closely related to a 
special case of ours is Grossman and Latoque'o (1990) model of comumer durable put-cha~es 

"Blmder (l98l). Bar-Han and Blinder (1992), and Lam (1991l look at data on tnventorles (the 
filst one) and consumer durables (the other two) under the organizing plinciples of (S,s) models. 
Bertola and Caballero (199Q) and Caballero (1993) prov1de a ;tructural empmca! framework and 
esttmate (5,.\l models for consumer durable goods Beno[a and Caballero (1994) implement 
empirically an irreversible investment model where mtcroeconomic mvestment is intermittent bttt 
nor !ttmpy. Caballero and Engel (1992a, l99Ja, J993b) estimate aggregate models of employment 
and price adjustments when mictoecot10mic ttntts follow more general (probabilisttcl microeconomtc 
adjustment rttle.s l1ut, contrary to tile current paper, they do not derive these rules from a nl!cro
economic opttmizanon problem. 
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procedure of estimating convex adjustment cost parameters from the first (or 
higher) order serial correlation of investment, we learn about more complex 
lumpy adjustment cost functions from the structure of aggregate investment lags 
and their changes over time. 

The next section presents the basic modeL It is followed by Section 3, which 
describes the econometric method and presents our main empirical results. 
Conclusions and extensions are discussed in Section 4. Several technical appen
dices follow. 

2. THE BASIC MODEL 

2.1. Overview 

We model a sector composed of a large but fixed number of monopolistically 
competitive firms. Each firm faces an isoelastic demand for its differentiated 
product, which is produced with a Cobb-Douglas constant returns technology in 
labor and capital. Both demand and technology are affected by multiplicative 
shocks described by a joint geometric random walk. These shocks have firm 
spectfic and sectoral (aggregate) components that we specify later. We work in 
discrete time. 

The sector faces infinitely elastic supplies of labor and capital. We choose the 
price of the latter as numeraire and let the wage (relative to the price of capital) 
follow a geometric random walK process, possibly correlated with demand and 
technology shocks. Firms can adjust their labor input at will but suffer a loss 
when resizing their stock of capital. Since our aim is to capture firms' infrequent 
and lumpy investment, we assume this loss takes the form of a fixed cost, which 
can be interpreted either as an index of the degree of specificity of firms' capital, 
or as a secondary market imperfection if machines or structures are replaced, or 
as a reorganization cost associated with putting new capital to work. In order to 
capture some of the time series and cross-sectional heterogeneity in these fixed 
costs, we let the extent of the loss due to adjustment vary randomly over time as 
firms may, for example, find better or worse matches or uses for their old 
machines, or may face reorganizations of different degrees of difficulty. 

As in standard (S, s) models, the resulting microeconomic policy is one of 
inaction interspersed with periods of large investment or disinvestment. As in 
standard search models, at each point in time the firm decides whether to 
"accept" the currently offered fixed adjustment cost or to postpone adjustment 
and draw a new adjustment cost next period. The interaction between these two 
mechanisms implies that, more realistically than in standard (S, s) models, the 
size of adjustments varies both across firms and over time for the same firm. 
During a given time period, firms with identical shortages or excesses of capital 
act differently. Over time, the same firm reacts differently to similar disequilib
ria in its stock of capital. 
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Intuitively, the largest adjustment cost a firm is prepared to tolerate without 
adjusting its capital stock decreases with the extent of its capital stock imbal
ance. If the distribution of adjustment costs is nondegenerate, this implies that 
the probability that a firm adjusts for a given disequilibrium-a concept we 
describe as the firm's adjustment hazard-increases smoothly and monotonically 
with the firm's disequilibrium in its stock of capital. 7 

Since we assume the number of firms is large and adjustment costs are 
independent across firms, the adjustment hazard described above characterizes 
actual sectoral investment at each point in time. Given firms' capital imbalances 
at the beginning of a period, the fraction of units resizing their stock of capital is 
determined by the adjustment hazard. Sectoral investment is the sum of the 
products of the adjustment hazard and the size of the investment undertaken by 
those firms that decide to adjust. Equivalently, it is the sum of the expected 
investment by firms, conditional on their capital stock imbalances before adjust
ing their capital stock. 

Sectoral investment depends critically on the number of firms at each position 
in the space of capital imbalances, thereby motivating our focus on the cross-sec
tional density of disequilibria. The dynamics of sectoral investment are deter
mined by the evolution of this density. The path of this density is driven by 
the interaction of sectoral, firm specific, and adjustment cost shocks with the 
history of shocks and actions contained in previous cross-sectional densities of 
disequilibria. 

2.2. The Firm 

Net Profits 

When the firm is not investing, its flow of net profits is 

where K is the firm's stock of capital, 8 is a geometric random walk shock to the 
profit function that combines demand, productivity, and wage shocks, r and 8 
are the discount and depreciation rates, and f3 is ·a parameter that is less than 
one, capturing our assumption of decreasing marginal profitability of capital, 
either due to decreasing returns in the technology or the presence of some 
degree of monopoly power.8 For mathematical convenience, we have written the 

1 This should be contrasted with 1ts two limiting cases: the standard (5, s) model, where the 
probability of a firm adJUSting jumps from zero to one at the tngger points, and the standard linear 
partial adjustment models. where this probability 1S independent of the size of the firm's disequilib
rium. 

8 For concreteness, let the production function be Cobb-Douglas and homogeneous of degree one 
w1th respect to capital and labor, with capital share a< 1. Let the demand faced by the firm 
be isoelastic, with pnce elasticity minus '7, 1 < '1 < "'· It follows from these assumptions that fJ = 
a(TJ-t)J(I +a(T]-1))< 1. 
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FIGURE I 

profit function net of flow payment on capital, (r + 8)K, where the latter 
represents the irrevocable commitments associated to purchases of capitaL~ 

It is useful to replace fJ in the profit function by a variable with more 
economic content. We do this by defining the frictionless stock of capital of the 
firm, K*, as the solution of the maximization of (1) with respect to capital, so 
that 

where t= (r + 8)/{3. Substituting this expression into (1), and defining the 
disequilibrium variable 

z = ln(KjK* ), 

allows us to rewrite the profit function as 

(2) II(z, K*) = 1r(z)K* = f(ef3z- f3e')K*. 

Figure 1 illustrates, and equation (2) implicitly defines, profits per unil of 
frictionless capilal, 1r(z ). 10 

9 Smce there are neither bmrowing constraints nor bankruptcy options, the solutiOn to the firm's 
problem is unchanged by replacing flow payments for a lump sum payment at the time of purchase. 
That is, conditional on buying new capllal, all that matters to the firm is the present discounted 
value of payments, not when these payments take place. 

10 The parameters used to generate this figure are fJ = 0.4, r = 0.06, and 0 = 0.1 
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Adjustment Costs 

When investing, a firm not only commits to pay for the capital acquired, but 
also mcurs adjustment costs. Since we wish to capture the intermittent and 
lumpy nature of firms' investments, we require these costs to exhibit some form 
of increasing returns. There are many ways to do so. One possibility is to follow 
Grossman and Laroque (1990), and assume the firm sells its old stock of capital 
at a discount when replacing it by a new one. An alternative, with similar 
implications for our purposes, is to assume firms must shut down operations for 
a fixed period of time when replacing capital. In the latter case, which is the one 
we pursue, the firm incurs an adjustment cost proportional to foregone profits 
due to reorganization: 11 

Adjustment Cost= w{ II(K, 8) + (r + 8 )K} = wK fJe, 

where w represents the fraction of profits foregone due to the capital stock 
adjustment A derivation similar to the one that led to (2) allows us to rewrite 
the adjustment cost in terms of z and K~: 

Adjustment Cost= w~e fJz-K*, 

where z~ denotes the capita! imbalance immediately before adjustment. 
Rather than treating was fixed-as in standard (S, s) type models-we let it 

be a random variable with a distribution function, G(w), independent across 
firms and over time, whose realization is observed at the beginnmg of each 
period. With this slight generalization of the standard fixed cost framework we 
capture-in an admittedly stylized form-two realistic features: heterogeneity 
in adjustment costs at any point in time, and time variation in these costs for any 
given firm. 12 More importantly, it wi!l be apparent m Section 3 that this 
extension gives us an important degree of flexibility when estimating aggregate 
investment equations. 

Microeconomic Adjustment 

Given the increasing returns nature of the adjustment cost technology, the 
optimal policy is obviously not one of continuous and sma!l investments but 
rather one of periods of inaction followed by occasional lumpy investment. 
Therefore, the firm's problem can be characterized in terms of two regimes: 
action and inaction. Finding a solution to the firm's problem is equivalent to 
characterizing the partition of(w, z)-space into these two regions and specifying 
firms' actions when located m the region where they act. In what follows we 

11 See, e.g., Cooper and Halt1wanger (199:3) for a model where the main cost of remganizatJOn JS 

its opportumty cost. 
11 A more realistic formulation would let adJUStment costs exhib1t some pers1stence at the 

indtvtdual level. It would also allow fm a distribution of adjustment cosb that depends on aggregate 
conditions. We do not incotporate these features into our model because they complicate substan· 
t1ally both the microeconomic and aggregation problems. 
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present the basic steps involved in finding this solution. In Appendix A we 
discuss the technical aspects and intermediate steps of the solution in more 
detaiL 

Inheriting the stochastic properties of e, K* fa !lows a geometric random walk 
(with drift); 

where p., is i.i.d. and, throughout most of the paper, Norma!. This implies that 
when there is no adjustment, z, follows a random walk (with drift and Norma! 
innovations). Together with the i.i.d. nature of w, this assumption ensures that 
the firm's decision on whether to adjust its capital stock in period t, and if so by 
how much, is fully determined by the vector (z" K,*, w,), which we refer to as 
the "state of the firm." The value of a firm with before-adjustment-disequi
librium z, frictionless stock of capital K*, and (current) adjustment cost 
parameter w-which we denote by V*(z, K*, w)-is the maximum of the value 
of the firm if it does not adjust, V(z, K*), and the value if it does adjust, 
V(c, K*)- w~efJ'K*, where c is the optimally determined return point (see 
below). In short: 

(3) V* (z, K;, w,) = max{V(z, K'/'), V(c, K,*) - w, ~e (Jz, K,*}. 

The evolution of the value of a firm that does not adjust in the current period is 
described by 

(4) V(z,, K,*) = 7r(z,)Ki "'+ (1 + r) -t E,[ V* (z,+ 1 , K,\ 1 , w,+ 1 )]. 

Since the profit and adjustment cost functions are homogeneous of degree one 
with respect to K* 1 given Z 1 so are the value functions V(z, K*) and 
V*(z 1 K* 1 w). This allows us to reduce the number of state variables by relating 
the problem in terms of the value per unit of frictionless capital. Let u(z) = 
V(z 1 K*)jK* and L'*(z 1 w) = V*(z, K*, w)jK*. Dividing both sides of equa
tions (3) and (4) by K*, and noting that 

yields 

(5) c* (z, w,) = max(v(z,) 1 o(c) - w
1 
~e fJ•,}, 

(6) L'(z,) = 1T(z,) + if; E,[ u* (z1+ 1, w,+ 1 )e-A•,. '], 

with if;= (1- 8)j(l + r). Figure 2 depicts in an example the basic setup devel
oped up to now.U This figure shows how u(z), u(c)- w~e/3' 1 and u"(z, w) 

13 Patameters. {3 ~ 0.4, r =0 06, 8 = 0.1, the mean and standard deviation of the logarithm of K,* 
are 0 and 0.1. the dJstributJOn of adjustment costs is Gamma With mean 0.17 and coeflk1ent of 
variation 0.16. All the numbers are broadly consiStent with our estimates and assumptions in the 
empirical pat"! of the paper. 



0 
N 
m 

INVESTMENT DYNAMICS 

' 
FiGURE 1 

791 

determine the trigger points, given a particular realization of the adjustment 
cost. The solid line illustrates the value of a firm that does not adjust in the 
current period. The dashed line represents the value of a firm that decides to 
adjust, given a realization of w. The max1mum between both lines describes 
uoc(z, w), and the inaction range-for a given w-corresponds to the interval 
between the intersection of the two lines. 

It follows directly from maximization of the value of a firm that decides to 
adjust, L'(c}- wt;ef3", with respect to the return point c, that the maximum of 
v(z) and v*(z, w) is obtained at z = c and that this return point is 1ndependent 
of the initial disequilibrium. 14 

The solution also can be characterized by the policy function, £2(z), defined 
as the largest adjustment cost factor for which the firm finds it advantageous to 
adjust given a capital imbalance z. From the value matching condition that 
equates the two terms on the right-hand side of equatron (5), rt follows that 

H ProposJtJon AI m Appendu A shows that the Bellman equation obtai11ed by substituting I"(J,) 

from (6) into (5) has a unique solution, which is continuous and bounded Even though the functiotls 
c{2) we obtained via value iteratiOn when performing estimatton always had a unique maximum. we 
have been unable to show this gene1ally. It follows that, strictly speaking, the retutn point c should 
be mterpreted a~ one of the pomts where d.zl attams its maximum, say the ;mallest value. In 
Propositwn AS we show that the set of maxima, and hence of possible return points, is finite. 
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FIGURE 3A 

which implies fl(c) = 0. Differentiating (7) with respect to z, evaluating the 
result at z = c, and using the first order condition u'(c) = 0, yields the additional 
"smooth pasting" condition !l'(c) = 0. 

Figure 3a illustrates the function 12(z) for the example in Figure 2, where the 
distribution of adjustment costs is a Gamma. As follows from equation (7), if the 
firm's disequilibrium is close enough to z = c, it will only adjust for arbitrarily 
small adjustment costs. From then on, f2(z) increases with lz- cl. 

Figure 3b depicts the inverse of the function 12(z). We label L(w) and U(w) 
the segments of the curve below and above c, respectively. These functions 
correspond to the maximum shortage and excess of capital tolerated by the firm 
for any given realization of the adjustment cost factor w. That is, for any fixed 
w, they describe a standard (L, c, U) policy.15 The area enclosed by the two 
curves corresponds to the combinations of disequilibria and adjustment cost 
factors for which the firm chooses not to adjust. 16 

The shape and location of the function fl(z) and its inverse, (L(w), c, U(w)), 
depend on the entire distribution of adjustment cost factors, G(w). A given 
realization of the adjustment cost factor will not generate the same inaction 

15 An (L,c, U) pohcy corresponds to a two-sided (5, s) modeL The notation L, U, and c stands for 
lower bound, upper bound, and "center," respectively. See Harrlson et aL (1983). 

16 Proposition A2 in Appendtx A denves formally the existence of fl(z), and Proposition AJ 
shows that it is an analytic function, and therefore has denvatives of all orders. Proposition A4 
shows that fl(z) tends to infinity as lzl tends to infinity. Yet we have not been able to show that 
fl(z) is unimodal, and therefore have no formal proof that, conditional on UJ, the optimal policy is 
of the (L, c,U) type. It should be noted, though, that all the policies obtained numerically when 
estimating the parameters in Sectlon 3 were unimodaL 
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range for different distribution functions G(w). In particular, a low value of w 
is more likely to lead to action when it comes from a d1stribution of adjustment 
cost factors with a high rather than a low average value. 

Adjustment Hazard, Expected !ncestment, and E1godic Density 

Adjustment Hazard: Above we showed that for any given w the firm follows a 
simple deterministic policy with respect to z: actions are taken only when z lies 
outside the (L(w), U(w)) interval, in which case investment occurs so as to bring 
z back to c. With aggregation in mind, here we reduce the amount of informa
tion contained in the policy. Rather than conditioning on w, we only use 
information on its distribution and ask the question: what is the probability that 
a firm with disequilibrium z adJUSts? 

The answer to this question is contained in what we call the adjustment 
lwzard. Let x = z- c denote a firm's imbalance with respect to its target point. 
A firm with deviation x adjusts only if the current adjustment cost is small 
enough to make adjusting profitable (i.e., if UJ < D(x +c)), which means that the 
probability of a firm adjusting, conditional on its disequilibrium being equal to x 
(the adjustment hazard), is given by 

(8) A.(x)=G(fl(x+c)), 

where G(M) denotes the cumulative distribution function for the adjustment 
cost factor UJ. For example, if G(w) is a Gamma distnbution with mean pljJ and 
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variance p¢ 2
, the adjustment hazard is 

A( ) ~ j JD.(r+c) p-l -wf<PJ 
x ( ) w e w. cpPr p a 

Figure 4a shows the adjustment hazard function for three different gamma 
distributions of adjustment cost factors. These distributions differ in their mean 
and variances: the solid line corresponds to an exponential distribution 
(mean and standard deviation of 0.1); the long dashes correspond to a high 
variance and mean distribution (mean: 80; standard deviation: 282), while 
the short dashes describe a low variance and mean distribution (mean: 0.14; 
standard deviation: 0.044). These examples illustrate the range of cases covered 
by our setup. Figure 4a shows that when the variance of adjustment costs is low, 
there is a range of adjustment costs where the firm (almost) never adjusts since 
adjustment costs are (almost) never small enough to justify it; the standard (S, s) 
-or (L, c, U)-case is an extreme version of this. Conversely, when the vari
ance of adjustment costs is high, and so is their mean, the decision of adjust
ment is largely motivated by the adjustment cost draw rather than by the firm's 
disequilibrium; in the limit, adjustment costs are independent of the firm's 
disequilibrium, yielding the standard linear partial adjustment model. 

In Proposition B2 in Appendix B we show that A(x) is differentiable, with 
A(O) = 0 and lim1.t1....,,..,A(x) = 1. 

Expected Investment: A firm with disequilibrium x has a probability A(x) of 
adjusting its stock of capital and, if it does so, it invests 

m 
0 

• 
0 

c ' 0 ' ' m ' 0 

m 
0 

" < " 0 

0 

(ec - e')K: =(e-x - {)e'K,* = (e-x - l)K,(x). 

' ' -
' 

' ' 

,_--- -, 

' 
' 
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Thus the ave1age investment of firms with d1sequilibdum x immediately before 
adjusting their capital stock in period r is 

(9) EJI,(xJ]x] ~ cl(x)(,-' -l)K,(x). 

Figure 4b depicts expected investment corresponding to the hazards in Figure 4a 
(with K,(x) = 1). The nonlinear-convex nature of expected investment is an 
important feature of the model, playing a key role in shaping aggregate invest
ment dynamics. It says that incentives to invest rise more than proportiona!ly 
with a firm's disequilibrium. 17 

Ergod1c density: We conclude our characterization of microeconomic behavior 
by stating that the disequilibria through which a firm goes over its lifetime, have 
an invariant density. The formal proof, which also shows that convergence takes 
place at an exponential rate, is given in Appendix B. The nonlinear nature of 
microeconomic adjustment, with relatively small adjustment for small imbal
ances, imprints the opposite pattern on the ergodic density: steeper hazards 
translate into relatively less mass in the tails of the conespondmg invanant 
density m exchange for more mass in the regions of low values of the adjustment 
hazard (i.e., relatively platokurtic). 13 

" 3 
" ~ 
3 
w 

0 

0 
0 

N 
0 

N 
0 

' 

' ' 
' 
' 
' ' ' 
' ' 
''' ' 

' ' 

- ~~- .. - ' --- ~ 

' -' ' 

C2 " C6 C.8 

0 

~,c.,,-----_e,c.8c----_c,c.6c----_-0ec,-----_e,c2c----_c,c,c----:ec----ce:-----~-----,J 

FIGURE 48 

17 This is a feature n<Jt shared by the ~tandard quadratic adjustment cost model hut it is certainly 
not exduslve. of models With fixed, m e.ve11 lJOncoiNC~. adJU>tment co~t~. 

1~The U.S. manufactutitlg platH level data studied in Caballero, Et1geL and Haltiwanger (!995) 
revealed that the. average. observed d1~tnbution of dJsequtltbrw ~~ con~1deu;bly more platokuruc tilan 
the avc:tage distribution of shacks affecting these plants. 
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2.3. Sectoral Investment 

Sectoral Investment and the. Cross-Se.ctional Density 

Let K,A, I/, K,(x), and I,(x) denote the aggregate (sectoral) stock of capital 
and gross investment, and the stock of capital and gross investment held by firms 
with disequilibrium x at time t (before adjustment). 

Since adjustment cost shocks are i.i.d. across firms, it follows directly from (9) 
that 

(10) I,(x) ~ (,-,- 1) A(x)K,(x), 

where K,(x) denotes the average stock of capital of firms with imbalance x. 
Letting {<x, t) denote the cross-sectional density of disequilibria just before 

adjustments take place, we can obtain an expression for aggregate investment: 

Dividing through by K,A and rearranging terms, we obtain an expression for 
the aggregate investment; capital ratio: 

(11) 
J,A j -

------::4 = (e-;"-l)A(x)f(x,t)dt 
K, 

The second term on the right-hand side of (11) drops out if (K,(x) - K,A) and 
(e-x -l)A(x) are uncorrelated. Since such an assumption simplifies computa
tions substantially, we make it and obtain an approximate expression for the 
aggregate investmentjcapital ratio: 

(12) 
J,A j -

---:::!"""" (e-""-l)A(x)f(x,t)dt. 
K, 

In Appendix C we describe in detail the additional computational burden of 
using (11) instead of (12), and present the results of Monte Carlo simulations 
showing that the cost of the approximation is only minorY 

It is apparent from (12) that since (e-~ -l)A(x) is generally nonlinear in x, 
aggregate investment depends not only on the first but also on higher moments 
of the cross-sectional distribution of disequilibria. 

19 The results in Caballero. Engel, and Haltiwanger (1995) are reassuring on this respect. There 
we used comprehensive establishment level data for U.S. manufactunng during the 70s and 80s, and 
documented a very close empirical fit between the actual and approximate series during that period. 
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The Linear/ Pm tial Adjustment Extreme 

An exception to the statement in the previous paragraph occurs when the 
adjustment hazard does not depend on x, and f has most of its mass near x = 0, 
so that e __ , - 1 = - x. In that case 

(13) 
K" 

' 
where A0 denotes the constant hazard, and X, denotes the average disequilib
rium before adjustment. Equation (13) corresponds to the well known partial 
adjustment model (PAM), and also coincides with the standard linear equation 
arising from the quadratic adjustment costs model. This is the only adjustment 
hazard that does not require cross-sectional information on the right-hand side 
of the aggregate investment equation. fndeed, a few steps of algebra allow us to 
go from equation (13) to the standard expression: 20 

(14) 

where L', represents an aggregate shock, to be defined in the next paragraph. 

Sectoral Equilibriwn and Cross-sectional Dynamics 

Shocks to wages, demand, and productivity drive the dynamics of frictionless 
capital. We decompose these shocks into sectoral shocks, v, and firm specific 
(idiosyncratic) shocks, E1: 

which implies that when the firm does not adJUSt, the disequilibrium measure x 
evolves according to 

.Jx,= -(8+L'1 )-E1 , 

where capital depreciates at a rate 8 from one period to the next. We assume 
these shocks are exogenous to the firm and the sector. 

Between two consecutive periods, the cross-sectional distribution of disequi
libria changes as a result of firms' adjustments, depreciation, sectoral, and 
idiosyncratic shocks. Since we are working in discrete time, it is important to 
describe the timing convention we adopt for events within each period. We 

~~Let k, and k;' denote the average of the logatithm of the pre-adjustment stock of caprtal and 
the fnctionless stock of caprtal, respectrvely We define e, = .:.lk;··, and note that iJ.k, ""(!/'_ , jK,~ 1) 

- 8. Combining these two expressions with the fact that 

yields 04). 
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denote the cross-section density at the end of period t- 1 by j(x, t- 1). 
Depreciation and the aggregate shock corresponding to period t follow, result
ing in the density {(x, t). Next come adjustments, as determined by the hazard 
function A(x). Period t concludes with the idiosyncratic shocks. The final 
density is f(x,t), and the cycle starts again. Recalling that a positive shock leads 
to a decrease in x, we can summarize this chain of events as follows: 

(15) j(x,t)~f(x+B+",,t-1), 

(16) f(x,t) ~ [J A(y)j(y,t)dy]g,(-x) 

+ J[l-A(x+c)]j(x+c,t)g/-E)dE, 

where g/c) is the probability density for the idiosyncratic shocks. The integra
difference equation describing the evolution of the cross-sectional distribution 
from one period to the next follows directly from equations (15) and (16): 

(17) f(x,t) ~ [J A(y)f(y + 8 + u,t -1)dy ]s,( -x) 

+ j[l-A(x+ E)]j(x+ E+ 8+ul't-1)g_(-E)dE. 

From equations (12) and (15) ~e obtain the following aggre.gate investment 
equation: 

(18) 
fA 

-'A= Jce-'-1)A(x)f(x+8+u,t-1)dx. 
K, 

Combining equations (18) and (17) we can determine the sequence of aggregate 
investment determined by an initial cross-section distribution, f(x, 0), and a 
sequence of aggregate shocks, {u,}. For details see Appendix C. We turn to 
estimation issues next. 

3. EMPIRICAL EVIDENCE: U.S. MANUFACfURING INVESTMENT 

3.1. Data 

Our data are constructed from annual gross investment and capital series for 
21 two-digit manufacturing industries from 1947 to 1992.21 All series are in 1987 
dollars, and the stocks of capital correspond to the series used by the Bureau of 
Labor Statistics for their productivity studies.22 Since capital stocks are end-of
year, our measures of the investmentjcapital ratio used in estimation start in 

21 We have 21 rather than 20 sectors because Motor Vehicles ts separated from Transportation 
eqmpment. 

22 This is one of the three capital stock series teported by the Bureau of Economic Activity. 
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1948. We report separate results for equipment and structures panels; each has 
945 observat10ns. 

3.2. Econometrics 

The econometric problem consists of estimating the parameters that charac
terize (a) firms' profit functions, (b) the initial distribution of disequilibria, 
(c) the distribution of adjustment costs, (d) the distribution of idiosyncratic 
shocks, and (e) the process generating aggregate shocks. In this subsection we 
outline the main features of the estimation procedure; a detailed description 1s 
presented m Appendix C. 

For tractability, we limit the number of parameters being estimated to those 
characterizing tl1e distnbution of adjustment costs or, equivalently, the hazard 
function. As far as the remaining parameters, we either fix them (profit function 
and distribution of idtosyncratic shocks), show that their role is limited within a 
reasonable range (initial distribution of disequilibria), or concentrate them out 
of the likelihood function (process generating sectoral shocks: individual effects 
and cross-sectoral variance-covariance matrix). Since identifying nonlinearities 
from a purely time series (as opposed to regressions) dimension requires a large 
number of observations, we impose a hazard function or a distribution of 
adjustment costs that is common across sectors (depending on whether we 
estimate a semi-structural or structural model~see below). 

The sources of randomness in our estimation procedure are the sectoral 
shocks, which we assume are multivariate Normal and independent over time, 
for most of our empirical analysis. 

We approximate the initial sectoral cross-sections by the invariant cross-sec
tion of an individual plant, and proceed to use the Markovian nature of the 
process generating cross-sectional distributions to generate these distributions. 
For each sector, and at each date, the cross~sectional distribution is updated as a 
function of the sectoral shock, using an implicit law of large numbers at the 
microeconomic (firm) level. The observed sectoral investment rate is a nonlinear 
function of the current shock and the distribution prior to this shock~this 
function is one-to-one in the shock. Conditional on the initial distribution, the 
sequence of sectoral shocks and the cross-section distributions can be recovered 
from the time series of sectoral investment rates. The likelihood is calculated 
using these sectoral shocks. We also need to calculate the corresponding 
Jacobian terms, which correspond to the elasticities of sectoral investment rates 
with respect to sectoral shocks. These elasticities are a byproduct of the 
calculation of sectoral shocks. 

3.3. Semi-Stmctural and Structural Models 

We estimate two basic models. In the first one (semi-structural), we estimate 
directly the parameters of an ad-hoc adjustment hazard. While in the second 
one (structural), we estimate the adjustment cost parameters and obtain the 
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implied hazard via dynamic programming. Both of these models yield increasing 
hazards,23 but include a constant hazard as a limit case. 

Semi-strnctural: Although our main goal in the paper is to estimate and assess 
the structural model, there are good reasons to start by estimating a less 
structured version. It allows us to search and test for the presence of an 
increasing hazard more directly, and it facilitates comparisons with standard 
linear models. Furthermore, by assuming that the adjustment hazard is an 
inverted Normal: 

(19) A(x) = 1-e-Ao-A2l', 

with A0 2 0 and A2 2 0, we are able to obtain accurate computations and to 
reduce estimation time significantly (by a factor of 12) by keeping the cross-sec
tion distributions within a closed family of mixture of Normals (see Appendix C). 

Strnctural: Rather than estimating the adjustment hazard directly, in this case 
we estimate the parameters of the adjustment cost function and obtain the 
hazard from the solution of the dynamic optimization problem presented in 
Section 2. Adjustment costs are drawn from a Gamma distribution: 

which has mean /L, = p¢ and a coefficient of variation cv, = lj{ji. We esti
mate f.Lw and cv,. 

As for the other structural parameters, we assume an interest rate, share of 
each type of capital, and markup of 6, 15, and 20 percent, respectively,24 as well 
as depreciation rates for equipment and structures of 10 and 5 percent per year, 
respective!yY We estimated the standard deviation of idiosyncratic shocks, a~, 
obtaining estimates in the range of 5 to 15 percent. Since these were not 
estimated very precisely, and comparisons across models are easier if idiosyn
cratic variances are similar, we only report results where we have imposed 
a"= 0.1 (both, in semi-structural as well as structural estimation). 

ll By increasing hazard we mean a hazard that increases With lxl, t.e., that is decreasing for x < 0 
and increasing for x > 0. 

14 These parameters imply a value of fJ around 0 45 if the prodLJction function is constant returns 
and all other factors of prodLJction (including the other type of capital) are fully flexible, around 0.3 
if all factors but the other form of capital are flexible, and around 0.15 if all other factors are fixed. 
Our condLJsions are robust to reasonable variations of {3, but we do not have enough power to 
identify this parameter m conjunction With those that we estimate. The results we report assume 
fJ = 0.4. 

ll Although there is a slight upward trend in the sample, these depreciation rates are consistent 
with the average depreciation rate computed from the ratio of actual depreciation to net capita[ 
stocks reported in Fixed Reproduc1ble Tangible Wealth in the United States, 1925-89. In any event, 
it follows from our description in Appendix C that, conditional on the initial cross-section, the 
depreciation rate is confounded with the mean of aggregate shocks. Thus our choice of depreciation 
rate only affects the intt1al cross-seC!!on. And since we discard the first three penods when 
calculating the likelihood, this effect is minor. 
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3.4. Main Resr1lts 

Table I contains our main results. The first two columns present semi-struct
ural and structural results for equipment investment, while the last two do the 
same for investment m structures. All estimated models allow for individual 
effects on the sectoral shocks, and include a free additive constant that is 
common across sectors. 

Sen1l-Stnlctural: The semi-structural results allow us to reject the constant 
hazard model, in favor of an increasing hazard one. The increasing hazard 
parameter, A2, is stgnificant at the one percent level in both cases. The 
estimated hazard function suggests that the probability that a firm adjusts its 
capital stock of equipment increases from about 14% for small imbalances to 
45% when its imbalance is 40%, while it goes from close to zero for small 
imbalances to about 32% for a 40% imbalance, in the case of structures. The 
sharp nonlinearity can also be captured through the expected investment;capital 
ratio (conditional on the imbalance); for equipment, it goes from close to 0.05 at 
a 20 percent imbalance to 0.23 at a 40 percent imbalance, while for structures it 
goes from 0.02 to 0.16, for the same imbalances. 

Structuml: The results of the structural models confirm the semi-structural 
increasing hazard findings. Moreover, the likelihoods rise, especially so for 
structures. 

The estimates of the mean of the distribution of adjustment costs (the vws) 
indicate that the average adjustment cost drawn is the equivalent of 16.7 percent 
of a year's operational profits for equipment and 22.8 percent for structures. 
Since firms can '·search" for a !ow realization of adjustment costs, these are 
upper bounds for the average costs effectively paid by firms when going through 
a major adjustment episode. Indeed, the average costs paid are 11.1 percent for 

TABLE I 

MA!N RESULTS 

Equ1pment Structcues 

Pat"'n<ter' SenH·S«U<<ctral StrUUU!al SemHtl uctu,al Structuml 

Ao 0.1)5 0.000 
(0 067) {0.054) 

A, 2.804 2.437 
(1165) (0.878} 

C()!1Sta!1l 0.057 -0.006 0.013 0.019 
(0.013) (0.016) (0.006} (0.002) 

"'' 0.166 0.228 
(0.029) (0.046) 

cv, 0.327 0.066 
(0.l09) (0.009) 

LLK 2430.2 2431.4 2612.4 2637 2 
LLK-NADJ 2315.2 2315 2 2497.0 2497.0 

Nme.1· Stando'd dev!Ot<Uns 1n par<nli\01>5 LLK log-ld,el,hood LLK-NADJ log-l,ke[,hood \\lt\\out 
adju"m<nl cowfdyn<1ntics 
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equipment and 21.4 percent for structures. The difference between the uncondi
tional and conditional (on adjustment) means rises with the coefficient of 
variation of these costs, which explains why adjustment costs actually paid for 
equipment are one third less than the mean adjustment cost faced by firms (see 
cv,) while in the case of structures both means are very similar. 

Comparing the last two rows of Table I illustrates the goodness-of-fit of the 
model. LLK represents the log-likelihood of the model while LLK-NADJ 
represents the log-likelihood of a model with no adjustment costs or dynamics 
(i.e., only a constant). The likelihood ratio test statistics for both equipment and 
structures are over 200. 

3.5. Simple Alternatiues 

We view the microeconomic foundation of our approach as one of its mam 
virtues; however in this section we look purely at the statistical advantage of our 
structural models over simple linear counterparts. We do not intend to conduct 
"horse races" against alternative investment models but want to provide a 
simple metric to assess the contribution of the nonlinearities we estimated to 
the time series properties of aggregate investment. 

The first obvious step is to compare our model with the "almost" nested 
PAM. As we argued above, the constant hazard model ( A1 = 0), together with 
the approximation e-" -1 = -x, yields the standard PAM, which corresponds 
to estimating an AR(l) for e<:!;ch sector's aggregate investment series. For 
comparability with the structural model, we constrain the correlation coefficient 
to be the same across sectors: 16 

More generally, we also run an AR(2) with unconstrained autoregressive coef
ficients for each sector: 

In both cases we preserve the assumption of jointly Normal aggregate shocks, 
and allow for individual effects. We look at within and out-of-sample criteria, 
and find widespread evidence supporting the structural nonlinear model over 
the linear representation for both equipment and structures. 

Within Sample Criteria 

The likelihoods of the linear models are uniformly lower than those of the 
corresponding structural models, even for the AR(2)s~which have 39 parame-

16 Re.c.all that the. structural model has the. same. distribution of adjustment costs across sectors. 
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ters more than the nonlinear structural models (the likelihoods for the linear 
models are shown in Table II). But comparing the likelihoods is not strictly 
correct, since the linear models (especially the AR(2)s) are not nested in our 
structural models. Instead, we use the test for nonnested models developed by 
Vuong (1989) and Rivers and Vuong (1991). 

Let 11 and ! 2 denote the maximum value attained by the log-likelihood for 
models 1 and 2, T denote the number of periods considered when calculating 
the likelihood (42, in our case), n 1 and n 2 denote the number of parameters for 
models 1 and 2, respectively, and S denote the Newey-West estimate for the 
variance of the time series of likelihood differences. The null hypothesis is that 
both models are ff-asymptotically equivalent; 27 should this be the case the test 
statistic 

(20) v, 
11 -1 2 - ~(n 1 -n 2 )log(T) 

1ST 
has a Standard Normal distribution. Positive values of Vu indicate evidence in 
favor of model 1; negative values evidence in favor of model 2. 28 

Table II presents Vuong's statistics and the p-values for the test that both 
models Oinear and nonlinear) are equally close to the "true" model, against the 
alternative that the (nonlinear) structural model is closer. It is apparent that the 
null hypothesis is rejected in favor of the alternative even at very low signifi
cance levels. 

TABLEH 

NONNESTED MODELS TEST: NORMAL SHOCf(S 

Equqm1ent $(1C[Ct\Lr<S 

eAM ARI'J.UNC '"" ARt'l-UNC 

Vuong statistic 2.61 4.25 2.92 4 07 
p-value 0.0045 < 0.0001 0.0018 < 0.000! 
Log-Lik 2387.2 24!9.Cl 2533.2 2578.5 

Not<'S Vuong """"lC colculated a> '" (201 All to" ""''-"'c' comp01< the "'"""'"[ mudd 
e,ltlmateJ l<l Table J Wi(h tho IMdel l<l the table f( l>oth L1\Qdel' ate "oquo!ly gaoJ." the asymptotLc 
dt>tributiun of the stMt<ti<" Standord Notntnl Lorge posi,ivc ''-Oiues p<Cl\'tde ~t·tden<c <n fovoL c>f 
the '"uctut.ll model. 

11 I.e., limT ~, ,fi(! 1 -/,) = 0. 
~&Note that. First, the -numerator of (20) contain~ a penalty term-the Bayesian Information 

Criterion, BIC-thal corrects for differences in degrees of freedom between both models. Second. 
denoting the sum of sectotal likelihuods for model! at time 1 by I," i = 1,2, and d, =1 1, -I,,, we 
have that Sin tile de.nommatot· of V~, 2 is ' -

.§(T.q) = Yo+l t [1- _J_]Y, 
J~ I q+ [ 

";'here. y1 denotes the sample autocon·e.]Jtiorl of order j of the d, time series. Since in ~11 cases 
S(T, q) does not vary much for values of q larger than 7. we choose q = 8 when calculating S irl (20). 
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One possible reason for the bad relative performance of linear models is that 
we have assumed that aggregate shocks are Normally distributed. Sectoral 
investment rates, on the other hand, are clearly not Normal; the skewness and 
(excess) kurtosis coefficient of (standardized, for every sector) investment rates 
are 0.61 and 0.74 for equipment and 0.76 and 0.87 for structures. Obviously, 
linear models with Normal errors cannot account for these departures from 
Normality. The innovations generated by the best partial adjustment model and 
best second-order autoregressive models also depart from Normal, as can be 
seen in Table III: Their skewness and kurtosis coefficients are 0.49 and 1.15 for 
equipment and 0.95 and 1.88 for structures in the partial adjustment case, and 
0.38 and 1.00 for equipment, and 0.86 and 1.65 for structures in the AR(2) case. 
All these numbers are significantly different from zero (the Normal case) at the 
0.001 level (estimated via bootstrap). The last two rows show that the increasing 
hazard model generates innovations that are closer to Normal than its linear 
and constant hazard counterparts. The estimated skewness and kurtosis coeffi
cients are considerably smaller, and both skewness coefficients do not depart 
significantly (at the 0.05 level) from their values under the Normality assump
tion. The increasing hazard model does not need to introduce nearly as much 
skewness and kurtosis in aggregate shocks to account for investment behavior. 

Normality is the natural assumption when aggregate shocks are conceived as 
the sum of a wide variety of small shocks with limited dependence (by the 
Central Limit Theorem). In spite of this, we momentarily relax this asSumption 
in order to consider shocks that admit skewness and kurtosis properties similar 
to those observed in sectoral inVestment; capital ratios. For this purpose, we 
generalize the distribution of the residual to consider convex combinations of 
Normal and log-Normal distributions. The log-Normal component does not add 
significantly to the structural model, while the linear models assign most of the 
weight to the log-Normal component. For this reason we compare the structural 
models with Normal shocks versus the linear models with Jog-Normal shocks in 
Table IV. Although the likelihood in the linear model improves substantially 
with this modification, Table IV shows that the test for nonnested models still 
favors the (nonlinear) structural models by a wide margin. In fact, the reduction 

TABLE III 

SKEWNESS AND KURTOS[S FOR INNOVATrONS 

Equipment Strucrures 

Model Skewness Kurtosis Skewness Kurtosis 

Part. Adj. 0.49 1.15 0.95 1.88 
(0.13) (0.36) (0.15) (0.65) 

AR(2) 0.38 1.00 0.86 1.65 
(0.12) (0.31) (0.14) (0.60) 

Structural -0.04 0.65 0.17 0.79 
(0.11) (0.20) (0.13) (0.34) 

No!<; Standard de"latlOM, obt•med "'"bootstrap. shown m p>r<ntheses 
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TABLE IV 

NONNESTED MODELS TEST LoO-N{)RMAL/NORMAL SHOCKS 

Equ:pment S"ucrurcs 

CAM AR(li-UNC CAM AR('I·UNC 

test (Normal) 2.42 7.97 3.57 4.53 
p-value 0.0078 <00001 0.0002 < 0.0001 
Log-Lik. 2409.3 2453.8 26!1.3 2678.6 

/Jores_ Vuong"·""'" calculated "' in (201. All ''"' """""' colllpate the wuctulal model 
es.,mated '" Table I wL[h the made[ tn the table.. lt bot!\ owdeh JLe "equ3lly gaod.'' t[\e 
asyn1ptotic di,,rnbutrG<\ of rhe srai<S(lC i; Sl&<~dard Nc:mn.aL Large pGSl(ivo valu~s prGVld< evi
der\ce '" tavor of the '"uctutal mqdel 
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in the denominator due to the increased precision of the test (the likelihoods 
become more correlated across models) more than outweighs the increase in the 
likelihood of the linear model. 

Out-of-Sample Criteria 

Next, we evaluate the out-of-sample forecasting performance of our model. 
For this purpose we reestimate the nonlinear structural and AR(2) models 
dropping ten percent of our observations (the last five years for each of our 21 
sectors), and generate the one-step-ahead forecast distributions, for each sector 
and year out of the sample. We only evaluate "the model's performance relative 
to that of an AR(2) using a standard Mean-Square-Error criterion, although this 
reduces the potential forecasting edge of nonlinear models.1g We postpone 
further discussion of forecasts' higher moments until the conclusion. 

Table V reports, for each investment type, the average (across sectors) MSE 
for each year (first two columns), and the percentage increase in MSE generated 
by the AR(2) model over the nonlinear one (third column). Except for 1988, the 
structural nonlinear model systematically outperforms the AR(2) representation. 
This is particularly true for structures, where the gain is over 35 percent during 
four out of the five years for which we generated out-of-sample forecasts. 

TABLE V 

AVERAGE MSE FOR 1-STEP,AHEAD FORECASTS: 1988-92 

Equtpment Stluctll!e' 

Y<.<r AR()I MOOEL ln({llflll ARW MOOEL In(( II/OII 

88 0.591 0.640 -oms 0.306 0.340 -0.092 
89 0.240 0.230 0.038 0.371 0.220 0.502 
90 0.308 0.270 0.131 0.207 0.150 0.359 
91 0 566 0 540 0.044 0 507 0.350 0.371 
92 0.399 0.330 0.194 0.518 0.340 0.425 

J~ See Ramsey (1996) fot arguments on the bias against nonlinear models inhere11l in MSE 
comparlsons. 
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This favorable evidence for the nonlinear model is reinforced by Table VI. It 
reports, for each investment type, the average (across years) MSE for each 
sector for the AR(2) and nonlinear models (first two columns), and the percent
age increase in MSE generated by the AR(2) model over the nonlinear one 
(third column). At the bottom of the table, we report the percentage increase in 
average (across sectors and time) MSE generated by the AR(2) model over the 
nonlinear one, as well as the median (across sectors) increase. The sectoral 
dimension is one along which we would have expected the nonlinear model to 
do relatively poorly, since in order to gain statistical power for the nonlinearities 
we were forced to impose the same distribution of adjustment costs across 
sectors, which is not likely to hold too closely in the data. The AR(2), on the 
other hand, has no constraints across sectors. Table VI shows that even under 
this unfavorable metric the structural model outperforms the unconstrained 
AR(2) representation. Again, this is particularly true for structures, where the 
gain in terms of MSE is over 15 percent for the median sector, and above 30 
percent for the average MSE. 

TABLE VI 

SECTORAL AVERAGE MSE FOR l·STEP·AHEAD FORECASTS: 1988-92 

Equ1pment St.ucwros 

Sector AR(2) MO!'lEL ln((l)/(2)) AR(2) MODEL )n((l)f(2)) 

20 0.591 0.780 -0.425 0.742 0.150 1.571 
21 0.085 0.084 0.003 0.117 0.150 -0.233 
22 0.343 0.310 0.091 0.221 0.120 0.612 
23 0.243 0.110 0.781 0.278 0.094 1.088 
24 0.160 0.240 -0.405 0.342 0.250 0.333 
25 0.083 0.092 -0.105 0.560 0.260 0.760 
26 0.034 0.068 -0.707 0.633 0.400 0.456 
27 1.620 1.710 -0.055 0.386 0720 -0.619 
28 0.129 0.180 -0.341 0.313 0.400 -0.247 
29 0.098 0.100 -0.036 0.628 0.570 0.097 
30 0.272 0.260 0.035 0.417 0.088 1.560 
31 0 082 0.089 -0.097 0.063 0.054 0.159 
32 1.433 1.000 0.357 1.483 1.000 0.392 
33 0.078 0.076 0.023 0.017 0.024 -0.352 
34 1.739 1.410 0.211 0.201 0.270 -0.288 
35 0.551 0.730 -0.276 0.353 0.400 -0.127 
36 0.506 0.420 0 181 0.328 0.390 -0.170 

3?.1 0.310 0.220 0.338 0.099 0.150 -0.411 
37 0.241 0.270 -0.124 0.494 oms 1.888 
38 0.221 0.200 0.120 0.184 0.210 -0.124 
39 0.099 0.072 0.319 0.162 0.100 0.467 

lr~([,Ol/[,(2)) 0.047 0.312 
Median 0.241 0.220 0.003 0.328 0.210 0.159 

Nm• The parameters were e;t1n1ated USlng da1a up to 19.17. MSEs are multiplted by 10 3 
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3.6. Dynamic Implications of lncreastng Hazard Models 

Perhaps the main distinctive feature for the model we have estimated, 
compared with its linear counterparts or a constant hazard model, is that not 
only average investment by those that are investing but also the number of firms 
that choose to invest at any point in time fluctuates over the business cycle. This 
is a realistic feature according to the establishment-level evidence 111 Dams and 
Dunne (1993). Among many interesting facts, they show that the number of 
plants going through their primary investment spikes (i.e., the single year with 
the largest investment for the establishment), rather than the average size of 
these spikes, tracks closely aggregate manufacturing investment over time. 

In terms of our model, this flexibility in the number of firms nwesting implies 
that the extent of the response of aggregate investment to aggregate shocks 
fluctuates over the business cycle. Figure 5 depicts the paths of the median 
(across sectors) derivatives of aggregate investment with respect to aggregate 
shocks for equipment and structures.'n It is apparent that this "index of 
responsiveness" fluctuates widely over the sample. Moreover, it is strongly 
procycllcal: rts correlations with aggregate shocks and aggregate investment are, 
respectively, 0.79 and 0.89 for equipment, and 0.72 and 0.39 for structures. 3 l 

There are traces of the cyclical features of our nonlinear model in our 
out-of-sample forecasts as well. The MSE ga,ins of our model over the linear 
AR(2) are particularly pronounced during periods of high activity. To show this, 
we proceed in three steps: First, we construct, for each sector, a standardized 
series of the difference of the absolute values of the forecast error of the AR(2) 
and the structural model, .Jit:l[: 

30 [f we define y(l') as the rlght-hand side of (18) evaltwted at I' instead of t'" then this index is 
equal to the denvative of y evaluated at 1',. Making the change of v;uiable u ~ x- c· 1n the integral 
that defines y(l') and diffetentiating undet the tntegral leads to 

y' (1•,) ~ j[e''' -r~4(u - 1',) - (e' ,-" - !) !l'(H - c·,) ]j(u + 8, I - 1) du. 

Adding and subtracting .A(!I- t•,) to th.e fits! term tn the integtal, using (18) and chang1ng variables 
give; 

y'(t•,) = y(!•,) + J .-l.(x)f(x + 8 + c,l- lJ d.r- J (e-·' - l)_.f(.r)f(x + ti + c,, I- 1) d.\. 

Altemat1vely, makmg the appl'Oximation (e-' -1)"' -.c before dJfferenttatmg, we obtain an mdex 
of responslveness equal to y'(l',l- y(t·,), which is constant for the constant hazard case (PAM, m 
that caoe). The figure obtained with this altemative index is qualitatively identlcal to Figure 5, 
although the standard deviat1011 of the index is about 30 percent less than that of the mdex reported 

)l The conelations with lagged inve>tment(capit;~l ratios are 0.60 and 0.13, for equipment and 
structures, respectively. 
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where ~i denotes the forecast errors (ar and nl stand for AR(2) and nonlinear 
model, respectively), and a,J..,r denotes the standard deviation of the difference 
in the absolute value of the forecast errors. Second, for each sector, we sort 
these standardized series by one of the following indicators of activity: the 
sectoral aggregate shock, u, the level of the sectoral investment; capital ratio, y, 
and the sectoral index of responsiveness, dyjdv. And third, we average across 
sectors the sorted standardized series. 

Table VII reports these averages for times when the sorting variable was 
below and above its median. With only one exception, all the entries suggest 
that a substantial fraction of the better performance of the nonlinear model 
comes from periods when the sectoral indicators of activity (shock, investment, 
and sensitivity index) are high. For example, we find that periods when aggregate 
shocks are below their median, achieve a forecasting-performance improvement 
which is 0.286 standard deviations lower than the average MSE gain for 
equipment, while it is 0.056 standard deviations lower for structures. Conversely, 

TABLE VII 

STANDARDIZED DIFFERENCE IN ABSOLUTE VALUE OF FORECAST ERRORS (AR2-MOOEL) 

Equ1pme"' Structures 

So" b~ r so,, by,. Sart by d)'/dl' Sort b~ ,_ Sort by_\' Sott by dvjdr 

Below median -0.286 -0.189 -0.043 -0.056 0.100 -0.013 
Above median 0.255 0.185 0.155 0 158 -0.033 0.092 
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when aggregate shocks are above their median, the forecasting-performance 
improvement is 0.255 standard deviations higher than the average MSE gain for 
equipment, while it is 0.158 standard deviations l11gher for structures. 

4. FINAL REMARKS 

In this paper we derived and estimated a time series model of sectoral 
investment that builds from the realistic obse1vation that lumpy adjustments 
play an important role in firms' investment behavior, but that allows for the 
empirically appealing feature that adjustments do not need to be of the same 
size across adjusting firms and for a firm over time. 

Using a nonlinear aggregate. time series procedure, we estimated the distribu
tions of fixed adjustment costs faced by firms. The adjustment hazards implied 
by our esttmates are nonconstant: they leave a significant range of inaction, and 
increase sharply thereafter. Depending upon the history of shocks, the estimated 
hazards have the potential to magnify or dampen the response of investment to 
aggregate shocks. The passivity of normal times is, occas10nally, more than offset 
by the brisk response to large-current or accumulated-shocks. These nonlin
earities clearly improve the aggregate performance of dynamic investment 
equations. 

Both the microeconomic as well as the aggregate implications of the esti
mated model are largely consistent with the establishment level evidence pre
sented by Cabal!ero, Engel, and Haltiwanger (1995) for U.S. manufacturing (for 
the 1972-88 period). They found evidence of an increasing hazard for the range 
of disequilibria where establishments spent most of their time. More impor
tantly, they also found an important role for the cross-sectional density of 
capital imbalances in explaining changes in the marginal response of aggregate 
investment to aggregate shocks. 

In the process of assessing the contribution of the model, we found an 
important forecasting gain over simple linear models. In almost every year and 
sector, and particularly so for structures, the nonlinear mode[ reduced the 
mean-squared-error by a substantial amount. 

Beyond the current paper, there are three extensions and robustness issues 
worth mentioning at closing: First, the nonlinear model has nontrivial implica
tions for forecasts' higher moments. Om preliminaty exploration of this issue 
reveals that the standard deviation, skewness, and excess kurtosiS of invest
mentjcapital ratios' forecasts, are highly correlated with the business cycle. 
These relations hint at a promising structural avenue to explore movements in 
forecasts' higher moments."" 

Second, in the working paper version of this paper (Caballero and Engel 
(1994)) we allowed for serial correlation in the rate of growth of aggregate 
frictionless capital (the L','s) and found very litt!e of it, which provides support 
for our i.i.d. assumption in the theory section. Interestingly, the linear (PAM) 

A good complement for nonsouctu1al ARCH rn1..>dels. fm example 
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model we estimated left plenty of unexplained serial correlation, especially for 
equipment investment 

Finally, and also reported in Caballero and Engel (1994), we extended the 
theory and empirical sections to acknowledge the existence of continuous 
"maintenance" investment, which does not require paying sizeable adjustment 
costs. We found that while such an allowance was important to obtain a more 
realistic distribution of observed changes in capital and average investment rates 
(in particular, smatl changes account for a significant fraction of microeconomic 
investment changes), it did not diminish the role of microeconomic lumpiness in 
accounting for the dynamic aspects of aggregate investment 
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APPENDIX A.: DYNAMIC OPTIMIZATION 

In this appendix we study lhe firm's stochastic dynamic optimization problem. In Section 1 we 
show existence and uniqueness of the solution to the firm's Bellman equation. In Section 2 we study 
the main properties of the optimal policy function. 

1. EXISTENCE AND UNIQUENESS 

From the main text it follows that the Bellman equation-for the firm's value function normal
ized by frictionless capital-is given by 

u*(z, ,) = m
1

ax { 7T(Z +i)- "'~eil'{i * O) 

+lj!j j e-d'u*(z + i + dz, w') dF(dz) dG(,.,') }• 

with U * 0} denoting an indicator function that takes the value 1 when the firm adjusts its capital 
stock and zero otherwise.33 

The operator associated with the above equation is not bounded from below. For this reason we 
add a term to u*(z, ,) that does not depend on the choice variable and therefore does not affect 
the firm's optimal choice, but does bound the corresponding operator: 

(21) i.i(z,w)=u*(z,,.,)+twe!l'. 

Substituting (21) into the expression above, usmg the expresston for 7T(z) derived in Section 2 of 
the main text, and performing some straightforward (but tedious) calculations, leads to the Bellman 

11 All terms that are not explicitly defined in what follows were defined in Section 2 of the main 
text. 
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equation for ~( z, m ): 

(22) ~(z, m) =max{ c,(m)eJl'- c1e' + 1jJ j J ~-.l=H~ +Liz, m') dF(Jz) dG( cu' ), 

wah 

max,[ c3ef"•- c1e" + lj; J J e-J=[>(u +Liz, (<J') dF(Llz) dG( w') J}, 

c 1(w) = £(1 + m- !/! E[eJl.lc] 11-,.,J, 

cJ = 1;{3. 

c\ = £(1- 1jiE[e~J-] 11-,), 

where 0,., denotes the mean of the distribution of the adjustment cost factor G( w ). 

811 

To show that (21) has a untque solutron we make the following tluce as;umptions and prove the 
following two lemmas. The assumptions hold throughoLtt the remainder of this appendix. 

AssUMPTJON l: The adjusrmem cost facror, w, ts bounded ftom above by W < + CJO and from bdm<' 
by 0 

ASSUMPTION 3. 1fif-l"E[e~.l'] = !/111-,fef)JodF(.:lz) < 1, where fL'" denotes rile mean of !lie dism'bli
IIOn of w. 

LEMMA Al: Let f(z) = k 1 e~'- k 2e', wah 0 < (3 < 1 and k 1• k~ > 0. Denore z,,1 = log(k 1 (3/kJ )j 
(l - /3) Then(( z l is mcreasmg fOi z < 'M, decreasi11g for z > z,11 , and atlm!IS its mmimwn 1 ~due, whtch 
is equalro (l - (3 )k jl(1- ~I( {3jk1 ) ~/(I -r; 1, m z = zM 

PROOF: Elementary calculus. Q.E.D. 

LEMMA A2: Consider the opera/or T defined by posing (TU)(z, w) equal 10 !he righr-hand side 
of (22). This op~1mo•· is defined 011 the set J1 of a/! ,ea/-vahiul, bound~d, conwruous fimatons wah 
domain ~X[O,W]. 

Theu T: (i) presen'es bmmded1ress; (ii) preserves conrinuiry; mrd (iii) smisfies Blockwel/'s condlflOnS 

PROOF: (i} Consider 11 E&l', bounded ftom below by!! and from above by U Then (Tu)(z, wlts 
bounded from above, since 

(Tu)(z, w) ~ 1/tE[e-J"]U + max{c 1(w)e#'- c,e', max[c 1 e~"' -c1e" 1) 
" 

'" 
0'> IJIE[e-J. ]ii + ,f(l- /3 )(I + W- lj1E[e~.lz] /1-,/ 1{]-~l. 

where the second inequality follows from the fact that, for ali w~O, ( 1 <c1(w), and the last 
inequality follows from Lemma AL 

1" In the main text we assume that .::lz follows a Normal distribution, with mean fL and variance 
<J 2• Then this c:ondttton is equ1valent to fL > ~<J ~ + log( lj; }, wl1icl1 for r + 8 « 1 corresponds 
approximately to fL > }(r 1 - J - 8. Thus, for the set of parameters we use 111 the emptr-ic<>l sec:tton, a 
suftklent condttion is tllat 0 > -0.1S for equipmet\t and J.L> -0.10 for stntctures. Both conditions 
can be expected to hold. 
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That (Ttd(z, w} is bounded from below follows from 

(Tu)(z, w);;, ',IIE[~-J']~ + max{c 1(to}e~' -c1e', max[c 1 e~" -c,e'"l) 
" 

;;, ',IIE[~-J' lu +max k:~eil'"- c1 e'"] 
" 

whete we used Lemma AI in the last step. 
(li) To show that tile function (Tu) is contrnuous for u E::J', we note that from (22) it follows that 

(lu)(z, ,) is the maximum of two functions; the first inherits continuity from u(z, w) and the second 
is constant. It follows that (Tu) is contmuou~ 

(tit) To show that T satisfies Blackwell's conditions, we first note that if u 1,u1 E$, and 
u 1(z,wl:$u 2(z,w) for all z and '"• then the expected value of any pOSitiVe random variable, m 
parhcular e-.1'. preserves the above meqLialtty. Thus 

(Tu 1}(z, w):::;; (Tu).)(z, oJ) 

A straightforward calculation shows that, for any u E:if and any constant a: 

(T[u + a]l(z, uJ) = (Tu)(z, uJ) + ,P E[e-;' )a 

The second Blackwell condition follows from Assumptiotl 2. 

PRorOS'ITION AI: Equation (22) !ws ~xi!cily one solulion (and tlus soluaoH belongs ro s&). 

Q.E.D. 

PRooF: It follows from Lemma A2 that T defines a contraction mapping on th.e metric spaces& 
(normed with the ~up-nor·m). The modulus of the contraction mapping is ,PE[e-~'). Existence and 
uniqLieness of a solutton to (22) now follows from the ContinLious Mapping Theorem (see, e g., 
Theorem 3.2 in Stokey, Lucas, and Prescott (1989)). Q.E.D. 

2 PROPERTIES OF THE OPTIMAL POLICY 

We define the followmg functions related to the solution of the Bellman equation, V(z,w), 
considered i11 the preceding section: 

(23) /(2) ~if! f ~~-J'ii(:z + .Jz, w) dF(t.z) dG(w), 

(24) J(:)=c 1eil'-c 2e'+f(z) 

LEMMA AJ: The funcrio!! l(:z) is bounded fi'om above, i.e., sup, f(;z) is finite. We dmote this 
supremum by ] 111". 

PROOF: Since {;(z, w) sati~fie~ Bellman's equation, we have 

(25) ;:;(2, w) =max{ gwef3' +l(:z), n;~xl(u)} 

If maxJ(z) we1e not finite, we would have that 
tion Al. It follows that sup, J(z) is finite. 

LEMMA A4: The fu11ction l(z) satis~I!.J· 

(26) lim l(z) =l0,.,1jJE[e-J'], 

(27) lim J(z)~-' = -c1 
=~ +~. 

i.i(z, w) is not bounded, contradicting Proposr· 
Q.E.D. 
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PROOR F1mn (25) it follows that 

ian i'lz,m)=l,.,_ 1 , ,__, _, 

which, from (23), impltes that 

ltm /(::) =1,,,"\&E[e-J' 
,_- z 

Exp1esston {26)now follow> from (24). 
Expression (27) holds lle.cause. of (241 and the fact that /(:) inltents 

i'(z, m). 

813 

hounde.dness from 
Q.E.D. 

The n<Oxt result establishes the exrste11Ce of a cu1ve in ( z, <ul-space partitioning this space tnto two 
regions: (ll\e wl1ere firms adjllst their capital stock and i\llotiler where they re.mam inactl\'e. 

PROPOSITION A2: Define 

T11~11 {inns &d)USI when tl1e11 cun'€111 adjusrmenl cow factor '"' 11' snw/ler rlw11 {)(z), ond I('IIJ(IIII 

i>wctire wh~11 w> D(:).-1-< 

PROOF: By equating both tenus on the. right-l1at1d stde ot' (25) we. obtain 

The inequalities that hold fm w larger and smaller than {)(2 l follow trivw\ly. Q.E.D. 

PROPOSITION A3 Til€ funcoon {l( z) is mwl\'flC 011 the real fine, ami therefOre l1as deriwth·es of' oil 
order 

PRoOF: From tile. definition of fl(z) and J(z) (see (28) and (24)) we have that it suffices ro show 
that /(z) is analytic. To do this. we note that/(:) may be wtiucn as the cotwolution of a 1\0tmal 
de.ns1ty and a contlnuo11~, bounded function· 

with 

K(z)= Jt-(z,w)dG(w), 

and df(:.lz l is a 1101 mal densitv with mean jL"' f-L- a-' and va11ance a-! (whetc dF( Jz) is 11otmal 
wltil mean ,_,_ and wuwnce (J ~ i. 

That the convolution of a normal density a11d an i11tegrable (in particular, a bounded, contirmous) 
function ls analytic, follows from a well known propetty of the exponentral family of dtstributions 
(see Th.eorem 9 on p. 59 in Leh.mann (1986)) Q.E.D. 

-"When w = {)(z) firms ate indiffetent bet-ween adjusting and not aJjusting. 
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PROPOSITION A4. As z tends to - oo: 30 

and as z tends 10 oo: 

(31) fD(z) -c~e(l-~ 1 ' 

It follows thai 

(32) lim !l(z) ~ "'· 
lzl~"' 

PROoF: Expression (30) follows from (28) and Lemma A4. Expression (31) follows from (27). 
Then lim 1 , 1 ~,., D(z) = oo follows from (30), (31), Assumption 2 and the fact that (3 < 1. Q.E.D. 

PROPOSITlON A5: The Ul 'if of z E IR such tho_t l(z) = J m•< is a nonempty set with a finite number of 
points. 

PROOF: Continuity of J(z) (it is analytic; see the proof of Proposition AJ) and Lemma A4 
combined with Assumption 2 ensure the existence of a bounded, closed set :? wtthin which l(z) 
attains its maximum. Continuity of J(z) on the compact set Jf ensLires that the maximum is indeed 
attained and therefore '15' is nonempty. Finally, since J(z) is analytic, we have that its maxima are 
isolated, thus showing that%' contains a finite number of elements. Q.E.D. 

PROPOSJT!ON A6: r.Jihm adjusting liS capual srock, a firm's opli11U1/ chota of z is any eiP.ment in 73'. 
Thus its disequilibriwn after adjusting does rwt depend on irs disequilibrium before adjusting. 

PROOF: The result follows from the fact that when the maximum between both terms in the 
right-hand side expression of (25) is attajned at the second term, this expression does not depend 
onz. Q.ED. 

All calculatwns of D(z) performed while estimating the distnbutwn of the adjuStment cost factor 
(see Section 3.3 in the main text and Appendix C) led to a set %' with a unique element, c, and a 
function D(z) that is decreasing to the left of z = c and increasing to the nght of z = c, therefore 
Implying an opttmal policy of the (L,c,U) type. Yet we have been unable to show formally that%' 
has one element (i.e., a unique return pomt), and also have not shown formally that, conditional 
on w, the firm's optimal policy is of the (L, c, U) type. As the following proposition shows, however, 
we can prove that the latter holds in a neighborhood of a return point. 

PROPOSITION A7: For (w, z) m a neighbor!wod of (0, c), the optimal policy is ofrhe (L, c,U) type. 

PRoOF: From ProposJt!On AS it follows that there exists a neighborhood "r of z = c such that 
J(z) is decreasing to the left of z = c and increasing to the right of z =c. It then follows from 
equation (28) that D(z) is decreasing to the left of z = c and increasing to the right of z =c. Thus, 
for all w $max,"' ~-U""' -l(z))e-!l' and z E "r we have that the optimal policy, conditional on 
the current adjustment cost factor, is of the (L, c,U) type. Q.E.D. 

APPENDIX 8: AGGREGATION 

This appendix is divided into three sections. In Section 1 we establish the exact expression for 
aggregate investment and present the results of simulations to assess the quality of the approxima
tion we use. In Section 2 we study the main properties of the adjustment hazard. In Section 3 we 
characterize the average cross-section of firm deviattons. 

36 We write a(z)- b(z) as z tends to c if lim,_, /a(z)jb(z)) = 1. 
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The following operatots, defined on the set of ptobnbility measure; on the real line, are used m 
Sections l and 3 of thts Appendix and in AppendL'\ C. 

• SECTORA.L (AGGREGATE) SHOCK, .w(l'): shtftS a cros~-~ection by 1'. 

• AoJUSTMf':NT SHOCK,/?( e)· appltes adjustments determined by the adjustment functton charac
terized by the parameter vector e. 

• lotOSYNCRATIC SHOCK, J(tJ '): convolves the probability measure with a Normal density with 
zero mean ~tnd variat\Ce "'· 

" FULL CYCLE OF SHOCKS, .>(I'+ i:i, fJ, tJ): equal to the combination of the three oilocks defined 
above,J 7 i.e_, to f((r)P'(fJ)sf(c· + 3). Equation (17) in the main text gives an expl1crt expre~s1011 tor 
the cross-sectron that tesults hom applying Yto f(_c_l- ))_ 

• AGGREGATE INVESTMENT FUNCTIONAL, j/: Assrgns to a ooss-sectron the average mve~tment 
tate that result> after adjustments take place (see equatiot\ (l2) in the main text). 

\. AGGREGATE INVESTMENT 

In th1s section we detive the exact expreSsion fot aggregate investment, of whtch equation ( 12) IS 

an approximation. We also aosess the quality of this npproximation. 

LEMMA Bl- We imroduce rhe follolL'ing normi,m: 
" .{, , : dtseqmltbrwm immcdwrdy before f!t!iiOd 1 ad;wancm of firm i; 
• r,_,. number of pe11'ods, as of rimer, smce fiutl i last ad]UJ'ted;-'s 
a 1,_ 1: los! lime fitm 1 odjtiS!ed (equal IO I- 1,_, ); 

• ''•\ ,- desired Ieee/ of (log) wpitnl of fiJ!)1 i immedwtely befo1e JtS hiS! ctdjuStmcl11 rook place; 
• k, 1 : fnm 1'.s (log) C{[p/l{rl stock mrmedwteiv {[f/cr !he los! lime ir i1dius1ed. NaiR t/rm k, 1 ~ 

k,\, + c'·;t,rd rlwt, {IS changes in wp11af snrce 11me I, 
1 

furue OJdy •·ef/ected dep•ecwtwn, rhrs qrw;i'tay 
comp/etdy detenftines the cunent capllal srock. 

Their, condilional 011 I,, '<I" hmV'. rltar _\', 1 all(/ k, 1 (1/C independent. Thai is, conditionol 011 when 
rhe firm last adjusted, irs (:11/1€111 dm:quihbm;m £/lid c;,;.;cn/ capital stock me mdepe11dem. 

PROOF: We have that, smce _(, 
1 

= k;',- k;'1 , it depends on shocks (aggtegate and idiosyncratic) 
that took place dunng periods t > I, ,. On the· ~tllet l1and, k, 1 depends only on shocks that took 
place at 1 :s;/,_

1
• Sinc-e shocks are ~.i.d., rt follow; that, co!;d{tional on 1,_, both quamities are 

independent. Q.E.D. 

PROPOSITION 81 Denore 
• 1r,(1 ): ftactiOII of plmrls, as of 11111e I, that /as/ adJusted r periods ago; 
'" R,().ll ): nceroge copito/ slock of ploflls •~irh disequilibrium x at time I, that la.JI adjusted 1 pmods 

ago: 
• R,(r)_ oL•emge copiud stock of oil fir/lis r/wr losr odp!Sted r per1ods 11g0; 1/wo 

• l,(r): aL'eroge im'es/mcm, ot tn11e r, of rhose r/wt losr odjusred' period; ogo; tlwo 

f,A ~ L 7r/l ll,(r), 

., /,~(xll ): cross,section, at ti111~ r, of pla111s rlwr odjusred 1 periods ago; dcnori~>g 

.'7, =_:-r·c e J.w c 1', + 8 )J( tJ/ ), 

PI =sv (r·, + 8) J(tJ/). 

and (I moss poinr ar 0 by i:iG, we IW!'e !hat 

f,"'(xl>l=?i.J;-_1 ·§,_,(i:iul 

_n lncorpm·ating depreciatJOtl-
3s Possible values are: 1,2,3,. 
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Then 

r;' ~ [1r,(,JR,<rlj<e-' -llACxJJ,Cxlrldx. 

' 
PROOF: 

!,-! ~ '\;' 11' (r)] (r) 
' f..., r ' 

L w,(r l j (e-' - 1) A(x) R,(xlr).f/ (xlr) dx 

L w.(r)R,(I') j (e-'- 1) i\(x)j,*(xlrl dx, 

whete we used Lemma Bl in the last step. Q.E.D. 

It follows that, to calculate the exact expression for the aggregate investmentjcapital rat10, we 
need to keep track of a sufficiently large number of coaditional cross-sections, f,(xll'), and the s1ze 
distribution of cohorts, 1T1(r). Computationally, this is substantially mote burdensome than the 
apptoxJmation we used. We show numencally, however, that thiS approximation mostly affects 
nuiSance (secondary) parameters. 

We note that if Y denotes the estimated values of the main parameters y/9 then a hnear 
transformation of the shocks used when calculating the lrkelihood still leads to the same main 
parametets.'0 It follows that a good measure of the quahty of the approximation we use is to 
determme the extent to which the exact expression comes dose to our approxtmatton when we allow 
for a lmear change in the aggregate shocks that determine exact aggregate investment 

To implement this idea we consider 50,000 firms with initial capital stock equal to one and 
disequtlibtium x equal to zero. All firms belortg to the same sector We Simulate the evolutiOn of 
these firms dunng 75 time periods, with parameters gtven by our esl!mated structural model We 
keep tcack of the aggregate shocks (denoted by t',) and our approximation to aggregate investment 
(denoted by w'l- Next we rerun the whole process wrth rescaled aggregate shocks (w, ~ o + bu,), thiS 
time keeping track of the exact expression for aggregate investment (y,r(a, b)). We find the values of 
"and b for which the senes y,'(a,b) ts closest to y,A To measure proximrty between both senes we 
consider two ctiteria, both of them applied to the last 45 observations of botl1 serie>: 

R?~l- MS(y,f(a,b)-w'J 

Var(_v;'l 

R 2 = 1-
Var(J{(a, b)- _v/) 

Vac(_v/) 

where MS(y,) denotes the average of the squares of the cort·esponding series and var(y,) its 
variance. These measures captun·~ the fit of a regression of y,r on y,A, differing m whether they allow 
or not for an additive conotant term.'1 Table VIII shows the tesults of our simulations. It is apparent 
that the excelleat quahty of the fit we obtamed JUStifies approxrmatiag aggregate mvestment by (12)_ 

19 There are three of these parameters ill both estrmatwn approaches we use. In both cases we 
have a free constant. The two remaining parameters characterize the distributioa of adjustment 
costs in the stmctural case and the adjustment hazard m the semistructural case. 

40 D1is follows from the exp1ession denved for the likelihood (see AppendiX C) 
41 It is arguable which criterion is more adequate in our case_ On one hand, we allow for an 

additive constant term when estrmating our models; on the other hand, it drd not vary across sectors. 
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TABLE VIII 

ASSESSING THE APPROXI~1ATI01' FOR AGGREGATIO {~VESTMENT 

EqnipL11Clll Stt<L<:t'"'""' 

,; O.G/5 0.003 

b 1.054 1.080 
R' 

' 0.980 0.995 

(, -0 019 -0 005 

b 1.2~5 LJ.J5 
R' 0 996 () 999 

} ADJUSTMENT Hio,L\RD 

!1' this <;ection we study the properties of the 1\djustment IW:taL'd: 

/\(_,)~G([}(>+c)) 

where cis" fixtd clement (say the smallest one) in the set z,· chatl\cterized i11 Ptope1sition AS. 

AssU~IP r!ON 4: Tile diYrifJIIIW!! jW!C/!0!1 G /wJ (! CO!IIiiiUOU.\' dcllsiry g( w I Willi J!I{J{J()I'I [0, W ], 

W<"'. 

PROPOSITION Bl- Under Auurnptiom I. 2. mid 3 made in Appemlh A we l1m'e rhar !lie adjuslm('n/ 
lw:::md sllli.J{ie;: 

(a] lim 1 , 1 ~, .1(.1) ~ L Furrhermarc, 1/icre exist\ o paJIIII'<' coJillai!l M .wc/1 !lw!for l.1l> M "'<'/wee 
il(\·J~L 

(b) .V \'I IJ dilfe' emioblc 111 tt/1_\ ond 

,l'(x) ~g(fl(_, +c))fl'(x+c). 

PROOF: (a) This follows immediately ftom PropOsition A4 and A.ssumpt1011 
(bl It foHows from the fi'Lct thnt /l(.r) is the compo:,ition of two dif(etetHiable f~nctions and 

thetefote differentiable (;ee Ptoposition A3). Q.E.D. 

J. INVARIANT DISTRIBUTION 

Due to the pte,ence of aggtegate shocks, the diottiblllion of diseqtttlibria that determitws 
aggreg~te mvestment (;ee Section 2.3 of the main te-xtl has no invariant distribution In Cab~llero 
and E11ge! (I 992b) we eot,tblish that. in a we! I defined sense, tl1e avetage ovet ~11 possible trajectat ies 
of aggregate shocks of the c.ross-sectton of devwtwns IS equal to the m1anant diSttilwtton t'aced by 
an individual firm." lr1 this section 1ve show that ~uch a d1stributton exbts and that convergence 
towatd 1t takes place at an expon<Ontial rate. 

Tlte following operators, all of which are defined on the set§ of pmbnbility den.sities on the re~l 
lme, will be useful tluoughmtt this section. 

• We let 5[o=.c/(JJ-+blf(a-')if(AI and J;_o=.:V(A).tv(fL+BIJ(a-'1, whete /-L denotes the 
me<tll of nggtegate shoch, 15 the deprecinttOII rate, <'' the wm (>f the variance of aggtcgate and 
1d1osyncratic shocks, and fJ the set of paramett1s chatactetizing the function A(.\)~ G( [!(x +c)). 

The operators_,,;,?, atld f wete defined eatlier i11 thio Appendix. Fm allY integet 11 > l we denote 
by 5;" the 11-fold compo~1t10n of J~, i ~ 1.1 

"TllUS the ag~1egate shock 1s com.tant and equal to p. and the ld\Osytlcrattc shock IS Normal with 
zero mean and vanance a- 2 =a-}+ cr/ 
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• We denote by '//(/) the function that associates to f the fractlOll of firms that adjust when 
applying J7; 

• We denote by .?,.~ 1 the operator that associates to an initial density f the cross-section of 
firms that have not adjusted after (n - 1) shocks, normalized to one. 

We assume throughout that shocks are Normal. The following lemma is needed to establish the 
main result of this section. 

LEMMA 82: Gwen a cross-!;eaion [0, lei f, =-9]_"(/0). Denote by 1T,/f0) 1/u probabtliry £har a 
pal'ticu/m· film adjusts at time 11, condit£Onal on not hat>ing adjul·ted dunng the first n - 1 periods, and 
denote by "Jj0) the ftacttOtl of fums that do !!Ol adJUSt dunng £he firs! 11 periods. Then there I!XlSts a 
conswnr a E (0, 1), common w all imtiol CJ'O!i!i-sections, such that: 

(33) 1T,.(/~);::l-a, 

(34) 'T,.(/ol :o; a" 

PROOF: Denote by 5;: _ 1 the set of all densities that may represent those firms that have not 
adjuSted after (n - 1) shocks. Since 7,,_ 1 c;J' and 1r,/f} = "'1(.?" _ 1(/)), we have that 

inf 1r,.(/) = inf ?/(g) 
{E!Ji;,_ 1 gEJf,,_, 

;:: inf ?'(/) 
(d 

Hence a lower bound for "' 1 also is a lower bound for ?T," " > 1 
Next note that it follows from Proposition B2 that there exists a constant M such that A(x) = 1 

for lxl > M. Denote by A*(x) the adjuStment hazard that is equal to one when lxl > M and equal to 
zero elsewhere. It is easy to see that both 'T,(/0) and 1- 1r 1([0) corresponding to this adjustment 
hazard ate larger than or equal to the conesponding quantities for the original hazard. Thus it 
suffices to prove (33) and (34) for A"'(x) and, in the case of (33), for n = 1. 

Apply10g the operator .9) to a mass point at x, 8,., we have that the value of x for which the 
fraction of fit-ms that does not adjust is largest, is the value such that the distribution before 
adjustment is normal with zero mean and vanance a 1 ,' 3 and th1s fractiOn is a "'2/f!(M 1 a) - 1, 
with 0 < a< 1 and tP denoting the c.d.f. of a standard Normal. It follows that for any density f(x) 
the fraction that does not adjust after applying .9) is bounded from above by a. Hence 1r 1 ;:: 1- a. 
Finally, given any cross-section f 0(x), we have that ,.Jf0 ) = n;;= 1(1- "',([0)), which is bounded 
from above by"'" Q.E.D. 

PROPOSITION B3: Giuen a11 arbitrary i11iJWl crOsN·ection, {0, let fk =!7i"(f0 ). Also, define the 
sequence (ft) as above, but for 1he porticuWr cas~ where fo is a mas.1· pomt a1 x = 0. 

Let"'£ dmole the probabil.tty 1/iat a firm that starll" off at x = 0 adJUl"IS al ttme n, COI!ditlona/ on not 
having adjusted during !he first n- 1 pmods. 

Denote 

and defin~ f'(x) = L,, 0p,/,0 (x). Then f,. converg~s tor m the [lariallon di.stana and convagence 
takes place at an exponential rate. 

43 Since <P((M -x)ju)- <P(( -M- x)ju) is maximized at .x = 0. 
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PROOF: We consider fits! the case where f~ = 8~. 

At any moment rn time, f,~ ca11 be partitioned into groups of firms that last adjusted the same 
number of periods ago. Hence [,7 is a convex combination of f8, f7, , g _ 1. 

The we1ghts on the above denSitieS can be determmed by the one-to-one correspondence With the 
Markov process witll state space :7'= (0, 1,2,3, }, and transition kernel: 

where 3i>J = l If i =J and zew otherwise. Stale l" leads to s + 1 (not adjusting) or to 0 (adjusting). 
The corresponding ptobabilities are I - -rr, and -rr, 

lt follows from Lemma B2 that the above process satisfies Condition M in Stokey, Lucas, and 
Prescott (1989, p. 348). Indeed, w1th tile notation of these aLJthors we have that there exists N = 1 
and E = max( a.l - "') > 0, w1th "' defit1ed 10 tile prec.ed1ng lemma, sLJch that for all subsets A of S: 

since 

tf{O,s+l]cAor{O s+l)cAc, 

otherwise, 

and from Lemma B2 we have max(1l",, l- 17,) = t for all r. 
Hence Theorem ll.t2 in Stokey. Lucas, at1d P1escott (1989, p. 350) implies that there exists an 

mvanant distnbut10n, f'", and a constJnt G =(I - t) < l, such that 

(35) II/,~- f'"ll.s G"ll/8- f'"ll. 

Furthermore, f'" is the unique fixed point of the Markov opera tot. The latter and a straightforward 
calculatiOn show that f'" = L, p,/,0 

Extending this resLJlts to the general case where fa can be arbitrary is stt·aightforward. All fi1ms 
eventually adJUSt and, once they adjust, the previous case appl1es (since they adjust to x = 0) 

Givetl a11 arbitrary/~ we may write 

where/,'; is a convex combmat1on of f!f,f[', ,f,;'11 , g,. could be any cross-section, and ,-, is 
defined in Lemma 82. 

From Lemma 82 and the fact that the variation dJslaiJCe is bounded from above by l we have 
that tl1ere exiSts ""E (0, 1) such that 

Convergence follows by letting n tend to it~finity; the tate at which convergence takes 
geometnc, being at least as fast as max(/G, ,;;;). 

APPENDIX C.. ECONOMETRICS 

place 1s 
QE.D. 

This dppendix is divided into two sections. In Section 1 we del"ive the IJkelJhood function a11d 
sketch the general appwach used for calculatmg this function at given parameter values. In Section 
2 we describe implemetltation details for the semist1 uctUJal {SectiOn 2,1) and structural (Section 2.2) 
cases. 
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1. CALCULATING THE LIKELIHOOD FUNCTION 

1.1. An ExpressWn for the Like/dwod 

The sources of randomness ("error terms") are the sectoral (aggregate) shocks, i.e., the vu's, 
where i = 1,. , 1 and r = 1, .. , T.H We assume that sectoral shocks are Normal and independent 
over time, and denote the mean and v::uiance of these shocks in sector i by !L, and c,, respecttvely. 
The (column) vector of sector t's aggregate shocks is denoted by V,, V denotes the column vector 
wtth V1 followed by V2 and so on, and f.Lr.J => E[Vl- We allow for contemporaneous correlation 
among shocks from different sectors, the matrix C = [c,

1
] denotes the corresponding covariance 

matrix (which does not vary ove1 tJme). 
Standard change of vanable calculal!ons lead to the following expressron for mmus the log 

likelihood: 

-log.lik. ~canst+ L log - + -logiCI + -(V- JLvHc-' ® lr)(V- f-Lv), "' I'Y"I T 1 ,,, av" 2 2 

where A 0 B denotes tile Kronecker product of matrices A and B and Yu ~ I"/K11 Concentratmg 
the likelihood with respect to C and f-Lv leads to 

(36) - log. lik ~canst + L. log -- + -log , 
1

Jy11 1 T I(V-AvlCV-AvYI 
,,, au., 2 T 

where;;:;:. corresponds to the vector of sample means. That the Jacobian rs well defined follows from 
Proposition B2. 

Calculating the likelihood m (36) requires calculatmg the sectoral shocks (the u,,'s) and the 
corresponding partral derivatives (the Jy.,jdv1,'s). Next we show that, conditional ori the imhal 
C!OSs-sectiOn and the set of parameter values, the r-elation between sectoral shocks and sectoral 
investment rates is invertible. Our proaf is constructive: it describes how the sectoral shocks are 
actually calculated for given parameter values. 

1.2. Calculating the Compo,unts of the Llke/i.hood 

Suppose we know the cross-sections of disequilibria in every sector at timet~ 0. It follows from 
the aggregate dynamrcs m our model that the observed capital-investment ratiO m the tth sector 
during period 1 is determined by the aggregate shocks in the first t periods (see equations (15), (16), 
and (18)): 

(37) (i~l, ... ,f). 

Furthermore, aggregate investment is a function of only the current aggregate shock and the 
cross-section prior to this shock: 

(38) Y11 ~y,(f,C,t- l),o,) 

(39) ~ f</J(t•,+O-.r)A(x-u.,-Olf,(.r,t-l)dr, 

44 By working with a contrnuum of firms we have that, desprte the presence of idiosyncratrc and 
adjustment shocks at the micro level, the only source of sectoral randomness are aggregate shocks. 
That is, the cross-section that results after adjustments is uniquely determined by the adjustment 
function and the cross-section prior to adjustments. Also, the cross-section that results after the 
idiosyncratic shocks is the convolution of the density (common across plants and sectors) from which 
these shocks are drawn with the cross-sectron prior to the shock. See equations (15) and (16) lll the 
main text for the corresponding formulas. 
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where 1n our case </J(uj = e"- 1 but, more geJJerally, m the derivatwn that follows dJ(ul could be 
any smooth and stnctly mneasing function with <f>(O) = 0. The derivative of the above expression 
with respect to 1'_, eva[llated at I' 1S equal to 

ilv, ( -·-c_r,c-,1- ll,d = [<t>'V + o-.\ uc ~- ~-- dJ 
au, -

+¢(1· + 3- tH'Cx -1·- dl].f,(.r.t- Od.t. 

Recallmg that ((A, 1) denotes the CJOSs-sectton imme-diately after period r's sectorJl (and deprecia
tion) shocks, we have that 

(40) J~, f . -(.f,(,r -l),t·") = [$'( -.rU(.d- <jJ(-xLi'(x)].fJx,r- I) d\·. 
,11'" 

It follows ftom our assllmptions Oil <P and tl1e fact that 4J(x) is decreasing for negative ' aad 
increasing for posrtive ~ (the "incteasing hazard" property) that the above derivauve is stnctly 
positive when _f,C.r,L-1) has suppon eqLJal to the real lme (as in Ollr easel. Thus c, IS LJniquely 
determined from (38)· 

(41) c,=t'11(v,,[,(,l-l)) 

(42) 

and proceedmg mducuvely we conclLJde that 

i',=!'"(y,,y,_,-1,. ,yd,/,( ,0)). 

It follows that, conditional on the mitial cross-sectwns, the 1•,'s ate Ltniquely determined by the y,,"s. 

The mrtral ctoss-sect1on irt sectot 1 1s set equal to the invariant probabtlity measute of the 
unconditional process descnbing the evolutton of d1sequilibria for an tndiVtdual plallt rn tl1at 
sector. 45 This is the cross-section obtained when :avetaging ovet all possible sample paths of 
aggregate shocks-'" 

Although th1s selectwn is arbitrary. we checked the robustness of our results by ;tudymg the 
corwergence proper[)~ of t11e cross-sections dtstribtttion near our initial distribution. We compared 
the sequence of cross-sections used in our likelihood calculations with those obtained whea we 
perturbed the mean of the mvarwnt-initial dtstnblltion by one standard devinlJon of t[;e average 
(across sectors) aggregate shocks. The Markov structure of our ptoblem. combined with tile 
coatracttonaty fealllres derived m AppendiX A, ensure that for any g1ven sequence of aggregate 
shocks, the d1stance between both cross-sectrons tend~ to zero over t1me w1th probabtltty one~ the 
issue is how fast one dJ.Stdbtttion converges to the other. Stmlllattons sltowed that. for the parameter 
values constdeted, the distance between both sequences of cross-sections become; negligible 
(variation distartce l~s than 0.0!) sometime between the second and th11·d cross-section after the 
mittal one41 Fot thts reason. we discarded the first three obsetvations for all senes when calculattng 
the likelthood. 

;; By unconditional, we mean that we do not condition on actual sectoral shocks For this teason 
the variance of shocks relevant tot tlm distnbut!On ts the sum of the vanances of sectoral and 
idiosyncratic shocks. In Appeadtx B. I we show that if F0 denotes the probability measure describmg 
a partrcular plant's deviJtJOn at time r = 0, and F, tile con·esponding probability measure r penods 
later, then F, converges in the variation dJ.Staace to a distnbutron F' which doe; not depend on the 
miti~l distributiOn F0. 

-1r, See Caballero and Engel (1992b) for· a proof. 
47 The parameter on which convergence depends most ts the vanance of Jdrosyncrattc shocks, 

convergence is faster as thts parameter becomes [atger. 
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1.4. Summary 

Given a set of parameter values, we calculate the likelihood in (36) as follows: 
L The imtial cross-section of firms' disequilibria (one for each of the 21 two-digit manufacturing 

sectors considered) are set equal to the mvariant drstnbution faced by an mdividual plant. These 
cross-sectiOns are denoted /,(x,O); '=I, .. ,21. 

2. Fort=! toT: 
(a} Solve (38) to find t'.,, i = 1,. ,21 
(b) Calculate Ciy.,j Ot', from (40). 
(c) Determine the next set of cross-sections of disequilibria (the {,C I)'s) based upon (15} 

and (16) 
The next section provides the ddails on exactly how every one of the steps above is conducted in 

both estrmatlOn approaches (semJ-structural and strucwral). 

2. IMPLEMENTATION 

2.1 Semt-slructum/Approach 

This approach estimates the adjustment rate functJOn directly. We assume that the adjustment 
rate function is common across sectors and of the form: 

with Aa :;., 0 and A1 :;, Q_ We estimate three parameters (besides the mean and variance-covariance 
matrix of aggregate shocks) Aa, A2, and an additive constant (common across sectors). 

E>timating rhe boitial Cross-sections 

[n what follows, we do not make any assumptions about the mean of the aggregate shock. If we 
knew thts mean, or could estimate It directly from the observed data, then we could determine the 
invariant density by calculating the invariant probabiltty function of a standard-fixed Markov chain 
(see Caballero and Engel (1994) for details). 

To compute the initial cross-section we p10ceed as follows. Fo1 sector i we let g,(x,O) denote a 
Normal density with zeta mean and variance a-J"' a/+ c,.. We set c,. equal to 0.035 for all 
sectors. 43 G1ven g,(x, .,._I) we calculate g,(x, .,-)by first solving for u in 

whete _Y, denotes the average capttal-mvestment ratio of sector i. The solution is denoted by u" 
Then we set 

As.,. grows, g,(x,T) approaches the unconditronalmvariant density for an individual plant, and 
t'" approaclws a constant consistent with the mean of sectoral investmentjcapttal ratio. We use this 
density a; the mitial cross-section when calculating the likelihood. SimulatJOns showed that using 30 
iterations (for each sector) was sufficient for all practical purposes_ 

48 There are two reasons for fixing c": Ftrst, It avotds estimatmg an additional nonlinear 
parameter Second, since we may expect that the vanance of idiosyncratiC shocks IS Sigmficantly 
lnge1 than tbe variance of aggregate shocks, the value of the latter is of little relevance when 
determining the adjustment function and the invariant density. 



INVESTMENT DYNAMICS 823 

Ccdculall!tg rile Likeliftood 

The family of adjustment functions with which we work has the attractive property that the 
evolution of the cross-sectiOns can be tracked efficiently using a convex combmation of a small 
number of Normal densities, thus reducing computational time substantially. To see this, we show 
next that if we assume that j,(x,t- I) is a convex combination of N Nor-mal densities, then j,(tJ) 
rs a convex combination of N + I densities We also derive simple expressions to update the means, 
variances, a1<d weights assigned to the Normal densrties charactenzing f,(~,I)_ 

Consider first the case N = 1 and assume f,(x, 1 - 1) is NormaL with mean f-1. and variatJce (J 
A simple but tedious calculatiOn shows that solvtng 08) reduces to solving for c, in 

(44) 

where 

The part1al derivative in (40) IS equal to 

(45) 

It follows from equation (17) in the mam text that the cross-section density afte~ the rth period's 
sectoral (aggregate), hazard and idiosyncratiC shocks, _f,C,t), IS a convex combmation of two Normal 
densities, one of them with mean 'l = ( f-1.- t', - 8 )j(l + 2 A1 a-") and variance 7' + a-/, and the 
other wtth zero mean and vanance (J} The former corresponds to those firms that did not adjust. 
the latter to those that adjusted their capital stock. The fraction of firms m the group that cloeo not 
adjUSt IS 

(46) 1(=-exp -A0 + ", l-1 . ' ( Ce-<' -Bl' [ ,, ]) 
(J lo-· (J 

[n the more general case, where f,(x, t- 1) = [.~= t "'k f"(x, t- 1) ts a convex combination of N 
Normal densities, t', is obtained by solving an equation analogous to (44) with a lmear combmatton 
of terms hke the one on the nght-hand slde of that equatlon 

y, = 'L,a!. j <[>(1'" + 8 -x) A(x- t',- 8)f'(x, I- 1) dx. 

" 
The partial denvative is equal to a convex combinatiOn of terms like those 111 (45). We also have tl1at 
f,(x, 1) will be a convex combination of N +I Normal densities. Each of these cro%-sectrons 
corresponds to a specific cohort, grouprng plants that have not adjusted for the same number of 
penods The "older" cross-sections are more spread out than the '"younger"' ones and have lost tn<lSS 
monotonically due to the adjustment of their members SimulatiOns showed that keepmg tr·ack of 30 
densities is extremely conservative: the impact on aggregate mvestment of cohorts much older than 
30 years ls negliglble. For this reason, m every period we merge the two oldest cohorts into one 
Normal density with mean and variance equal to those of the convex combrnation of the denslttes 
being merged. 
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2.2 Srmcrwul Approach 

Instead of estimating the adjustment function dir-ectly, as m the semistructural case, here we 
estimate the parameters of the distribution of adjustment costs and obtain the adjustment function 
from the solution of the dynamic optimizauon problem described in Secuon 2. 

The initial disttibution is calculated in a way analogous to the semistructural case. Adjustment 
costs are drawn from a Gamma di>tribution 

I f" G(w) = --- r)p-l~-~Ndry, 
<fJPr(p) 0 

which has mean !Lw = p<f; and coefficlent of var iatwn cv,_, = 1/ {P. Agam, we estimate three 
parameters (besides the means and variance-covanance matrix of aggregate shocks): J.L,, cv~, and an 
additive constant (common across sectors). 

AdjuSlnW11 FwtCll0/1 

The adjustment function for a given set of pat·ameters is obtained by solving numetically the 
stochastic dynamic opttmtzation problem descnbed in Section 2. For this ptnpose-but not when 
evaluating the likelihood from the shocks and Jacobian terms-we disregard sectoral differences in 
I-LA and u,.,, and assume the parameters that detetmine the adjustment functton ( J-L,, cv.,, u,, ,. , 8, 
{3, itr addition to IL.< and u,.,) at·e common across sectms. This allows us to calculate only one 
adjustment functiOn and use tt for all sect01s. 

We use a grid of 800 equally spaced points on the interval [- 3.5,3.5] to determine the value 
function vta value tteration. 49 The corresponding steps, for which extensive stmulations showed that 
30 iterations were sufficient, are. 50 

c, = argmax(t',(z)), 

The distribution of J.z is Normal Wtth mean In(! -li) and vanance equal to the total variance faced 
by an individual firm (u} = u,) +a}). When calculating c, we interpolate with a quadratic 
polynomral the value function t',/z) at the three points on the gnd where the functron ts largest, and 
set c, equal to the argument of the maximum value of this polyt10mial. By doing this maximization 
over a smoothed functton, we avoid having to work Wtth a dtsconttnuous ltkelihood functtOn. 

We set the mean of the aggregate shocks equal to the mean estimated wtth the semi-stmctural 
approach. 51 

49 Usmg 200 pomts makes no significant difference; we Ltsed 800 becauoe the additional ttme 
involved was smalL The reason why we need at least 200 pomts is that we fix the grid of possible 
values of ~ (between -3.5 and 3 5) m advance, so that often a significant part of thts mterJal 
becomes irrelevant (the hazard is almost eqLJal to one on it). Also, the finet the grid, the closer we 
can get to the case where the adjustment hazard looks like that of an (S,s) poltcy. 

oa See Section 2.2 for the derivations. 
11 We set tillS value ex-ante to avotd havmg to estimate addittonal nonlinear parameters. Because 

of the nonlinear adjustment term q,(u, + 8- x) in equation (38), there is no simple way to obtain at\ 
estimate of thls dtift ftom the data Also note that, as descnbed earlter, when calculating the 
invariant denstty of firm deviallons, we allow for a firm-specific mean that is approximately equal to 
the observed mean of the correspondmg sector. 



INVESTMENT DYNAMICS 825 

Family of'Adjllll111ent Funuions 

The adjustment function estimated vw dynamic opttmizatton JS evllluated on a gnd of 800 p0111ts 
This makes it computationally infeaoible to oo[ve the 945 nonlinear equanono tteeded to calcultne 
the t•.,'s in evety evaluation of the hkehhood for tilts reJ.son we work Wtth a fan11ly of adJUStment 
functwns characterized by only a few parametets and such that the derivative, needed for the 
Jacobtan terms do not need to be calculated numerically 

Expetimentation with a vatiety of distributlot1S of adjustment costs showed that lite family of 
conttnuous, ptecewbe invened Nonn;tl <>dJUStment functions approxtmates well the <>dJUStmcnt 
functJon., obtained via value ttetation. Tluee ptcces suffice f01 most ptactica[ put poses, with the 
mtddle piece equal to zero. A reptesentattve member of tltis four par!Jmeter tamily is of the form 

(
0

[-,,-' ,,_,-,, if t <x-. 
(471 .l(.rl= if.r-::s;t·::s;x+, 

1-c_,.,,_,., it.>>>+ 

We approx1mated the positive (_1· > 0) and negative (\'<OJ atms of tile adjustment funcuon 
obtatned via value tteration oeparately. We determtned ~ _._ and A+ by impositlg tll!Jl the !Jppwxim<>
tion m~tche~ tile functton ohtainecl via value iteration at the (positive) points where the hazard 
equals ().25 and 0.75. We obt!Jined ~- and A- tmposing an an<>logous condttion fm negattve value~ 
of '-

Ca/cuhm11g !he !','s (llld !he C01nspoJJdmg Del'imiJI<'.s 

Whetc keepmg tutck of the cro;s-section of deviations, we apptoximate t:Ct- l) hy 33 mass 
points on a gnd of equally ~paced pouw, (we discus; wl1y we chose 33 points slwrtly) We solve for I' 

in 

:Y[Ii(A-,A+,_,- _,+J.w(c+til]_t:(.l,l-ll=y, 

The pattiJ.l detivatives ate calculated ftom (40). Next f/x,t) is obtai11ed flont 

f,Cr.t) =S"(c, + 8, A-, A+,_\-,~+ <T, lf,C.t.l- !). 

The operatOJ .<Y(l'_, + 3) is implemented by shifting the 33 mass points deocribing .f,(-,1-ll by 
r, + 8. The adJUStlltetll operator, 1?, ~~ applted next. le<>ding to 34 mass points (otte at each point 
where there was mass bef01e adJustments and a tlew mass at zeto): if ,. is a point with mass m( t) on 
the pre-shock grid. then after rile adjustmettt shock we have mass ( l - /H.t l)m(.l) at _, and mass 
,t(x)m{x) stemming ftom this point at zero. 

Finally the tdiosyttcrattc slwck takes place each of rile 34 mass pomrs become; a Normal denstly 
with mean equal to rile point whne the mass was located and standard deviation a-, The resulting 
density JS computed Ill 33 equ!Jlly spaced points on [ tt-"- 4o-", ,_,_., + 4o-,,], whcte ,_,_., and CJ,~ denote 
the mean and variance of rile ctoss-section obtained aftet the iJiosyncratic shock_;J We work with a 
dy1wmic grid to reduce the number of pomt~ needed to ttack the cross-stction. SimulM10n~ ~hawed 
that 33 points on a grid of wtdth equal to 8 standatd deviations, centeted around tlte mean, suffice to 
obtain !JCCutate estimate~ 
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