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EXPLAINING INVESTMENT DYNAMICS IN U.S.
MANUFACTURING: A GENERALIZED (§,5) APPROACH

By RICARDC J. CABALLERO AND EpuaRpo M. R. A. ENGEL!

In this paper we derive a model of aggregate tnvestruent that builds from the lumpy
microeconomic bhehavior of fioms facing stochastic fixed adjustmient costs. Instead of the
standard sharp (8.5} bands, firms' adjustment policies take the form af a probability of
adjustment {adjusaent hazard) that responds simooathly to changes in firms’ capacity gap.
The model has appealing aggregation properties, and vields nonlinear aggregate time
series processes. The passivity of normal times is, oceasionally, more than offset by the
brisk response to large accumulated shocks. Using within and out-of-sample criteria, we
find that the model performs substantially better than the standard finear models of
investment for postwar sectoral U8, manufacturing equipment and structures investment
dara,

KevworDs: Investinent, adjustment costs, adjustment hazard, aggregation, heterogene-
ity, [umipiness, nontinear time series.

L. INTRODUCTION

Minor upgrades and repairs aside, investment projects at the plant leve] are
intermittent and lumpy rather than smooth. This is starkly documented in Doms
and Dunne (1993). They use the Longitudinal Research Datafile to study the
investment behavior of 12,000 continuing (and large) U.S. manufacturing estab-
lishments for the seventeen year period from 1972-1988, and find that: (i) more
than half of the establishments exhibit capital growth close to 50 percent in a
single year, and (ii} over 25 percent, and perhaps as much as 40 percent, of an
average plant’s gross investment over the seventeen year period is concentrated
in a single year /project.™*

Since this basic feature of microeconomic data is seldom considered in
empirical investment equations, it perhaps should come as no surprise that
success in estimating and testing investment equations is so rare.* At a broad
level, our goal in this paper is to develop and test a framework to study the
dynamic behavior of aggregate investment, subject to the constraint that jt

"We are grateful to Olivier Blanchard, Whitney Newey, James Stock, an editor, three anonymous
referees, and seminar participants at Brown, CEPR-Champoussin, Chicaga, Columbia, Econametric
Saciety Meetings (Caracas and Tokya), EFCC, Harvard, IMPA, LSE, NBER, Princeton, Rochester,
SITE, Toronta, U. de Chile, and Yale for their comments. Financial support {to Caballera) from the
National Science and Sloan Foundations and (to Engel) from FONDECYT (Grant [95-510% and the
Mellan Foundation {(Grane 9608) is gratefully acknowledged.

* Since planis’ entry 1§ excluded from thewr sample, these statisties ave {ikely to represent lower
baunds on the degree of lunpiness in plants’ investment patterns.

*We use the ward “project™ ta emphasize the fact that the actual implementation of a project
may caover more than a yeat-observation; cealistic time-to-build aspects of invesiment are not in
cantradiction with the view that tnvestment episades ave Lumnpy in nature.

*§ee Chivinka ([994) far a survey of the empirical investment literature.
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builds up from microeconomic units generating the lumpy and intermittent
pattern observed in microeconomic data.

Achieving such a goal requires three methodological ingredients: {i) a micro-
economic model of lumpy adjustment; (ii} an aggregation procedure; and (iii) an
estimation and testing method that is not only consistent with (i} and (i), but
also able to highlight the impact of the proposed microeconomic model on
aggregate dynamics,

As in the standard (S,s) literature, our microeconomic moadel generates
lumpy behavior through the presence of a fixed cost of adjusting the firm’s
capital stock. Unlike this literature, the fixed cost is random so the “inaction
range” is no longer fixed over time (and across firms). The optimal policy still
takes a simple form under standard assumptions about the stochastic process of
exagenous variables: let z denote the log-difference between a firm’s actual and
frictionless (i.e., in the absence of adjustment cost) stock of capital, and let w be
a random variable indexing the adjustment cost faced by the firm at some point
in time, with distribution G{w). The solution to the firm’s problem yields a
function (2(z) that represents the maximum realization of @ for which a firm
with imbalance z chooses not to adjust. For any smaller e, firms adjust fully.
Remoaving conditioning on @, on the other hand, vields an adjustment hazard
function A{z} that describes the probability that a firm with imbalance z adjusts.
Since it varies smoothly with z, this probabilistic (S, s)-type rule is more
amenable to aggregation than the standard fixed-hands (S, s) model and, mare
impaortantly, has the virtue of nesting a wide variety of models. At the extremes,
when G(o) degenerates into a spike we recover the (S, s} model, while when it
hecomes a distribution with plenty of mass at very low values of « and the
remaining mass at very high adjustment costs, we approximately recover a model
with linear aggregate dynamics (the standard partial adjustment model}.

Firms’ actions are not perfectly synchronized. On one hand, at any point in
time adjustment costs differ across firms. On the ather, differences in initial
conditions, idiosyncratic shocks, and previous actions, yield a nondegenerate
cross-sectional density of capital imbalances, f(z,¢), at all times. Aggregation
proceeds in two steps, both under the assumption of a large number of firms:
First, within each z, the microeconomic adjustment hazard now represents the
fraction of units with that imbalance that choose to adjust at any given moment
in time. Second, to obtain aggregate investment we integrate these adjustments
across z, using as measure the current cross-sectional density. In order to
describe the dynamic path of aggregate investment we characterize the path of
f(z,¢) which, under our assumptions, is Markovian with a trapsition operator
that depends on the realization of aggregate shocks.

We make (fairly flexible) distributional assumptions about aggregate shocks
and estimate the model by Maximum Likelihood using (aggregate} two-digit U.S.
manufacturing investment /capital ratios for the period 1948-1992, We find
clear evidence in favor of our generalized (S, s) model, both in terms of within
sample criteria and out-of-sample predictive power. Qur structural interpreta-
tion of these nonlinearities indicates that fixed adjustment costs faced by firms
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are large. Although important for both, these features are more pronounced for
structures than equipment. When compared with standard linear models, the
farecasting accuracy of the model we postulate is substantially improved.

One of the main mechanisms by which aggregate dynamics generated by the
(8,5) type model differ from their lineat counterparts, is that the number of
active firms changes over the cycle—a point emphasized by Bar-Ilan and
Blinder (1992). Doms and Dunne (1993) confirm the importance of this mecha-
nism by showing that the number of plants going through their primary invest-
ment spikes, rather than the average size of these spikes, tracks closely aggre-
gate manufacturing investment over time. Consistently, and depending on the
specific sequence of preceding events, the nonlinear madel we estimate has the
potential to generate brisker expansions than its linear counterparts. It is also
this feature that largely explains its enhanced forecasting properties.

Beyond the empirical findings on investment and its integrative nature, this
paper has two specific methodological contributions to the new literature on
nonconvex adjustment costs and lumpy actions.

On the microeconomic side, there have been several developments on models
of lumpy and intermittent adjustment {(the (5, s) literature).® As we discussed
above, here we extend these models so the adjustment trigger barriers vary
randomly across firms and for a firm over time. This modification is a first step
toward introducing the realistic and empirically important feature that units do
not always wait for the same stock disequilibrium to adjust, and that adjustments
are not always of the same size across firms and for the same firm over time,
while preserving a fairly parsimonious aggregation setup.

More recently, there have also been developments of empirical models of
aggregate dynamics with heterogeneous microeconomic units adjusting intermit-
tently.® FEconometric implementation of these models, however, has required
observing (or estimating separately in an often debatable first stage) a measure
of the exogenous component of the aggregate driving force. Qur nonlinear time
series procedure does not require the first stage; it only requires information on
the aggregate investment series itself and on the generating process of the
driving force (but not its realization). Somewhat analogously with the standard

*See Harrison, Selke, and Taylor (1983) for a technicaf discussion of impulse control probiems.
For a good survey of the economics literature —although with an emphasis on models where
investment s infrequent but nat lumpy-—see Dixit and Pindyck {1994). More closely related to a
special case of ours is Grossman and Laroque's (1990) madel of consumer durable purchases.

i Blinder (19381), Bar-llan and Blinder {i992), and Lam (1991} look at data on inventaries {the
first one} and consumer durables (the other rwo) under the arganizing principles of (5, 5) models,
Bertola and Caballera (1990} and Caballero (1993) provide a structural empirical framework and
estimate {5,5) models for consumer durable goods. Bertofa and Caballera (1994) implement
empirically an irreversible investrment model where micraeconomic investment i intermittent but
not lumpy. Cabailero and Engel (1992a, 1993a, 1993b) estimate aggregate madels of emplayment
and price adjustments when microecanomic units follow more generval (probabilistic] microeconomic
adjustnient rules but, contrary to the current paper, they do not derive these rules fram a micro-
ecanamic optunizaton problem.
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procedure of estimating convex adjustment cost parameters from the first {or
higher) order serial correlation of investment, we learn about more complex
lumpy adjustment cost functions from the structure of aggregate investment lags
and their changes aver time.

The next section presents the basic model. It is followed by Section 3, which
describes the econometric method and presents our main empirical results.
Conclusions and extensions are discussed in Section 4. Several technical appen-
dices follow.

2. THE BASIC MODEL
2.1. Overview

We model a sector composed of a large but fixed number of monopolistically
competitive firms. Each firm faces an isoelastic demand for its differentiated
product, which is produced with a Caobb-Douglas constant returns technaology in
labor and capital. Both demand and technology are affected by multiplicative
shocks described by a joint geometric random walk. These shocks have firm
specific and sectoral (aggregate) components that we specify later. We work in
diserete time.

The sector faces infinitely elastic supplies of labor and capital. We choose the
price of the latter as numeraire and let the wage (relative to the price of capital)
follow a geometric random walK pracess, possibly correlated with demand and
technology shocks. Firms can adjust their labor input at will but suffer a Joss
when resizing their stock of capital. Since our aim is to capture firms’ infrequent
and lumpy investment, we assume this loss takes the form of a fixed cost, which
can be interpreted either as an index of the degree of specificity of firms’ capital,
or as a secondary market imperfection if machines or structures are replaced, or
as a reorganization cost associated with putting new capital to work. In arder to
capture some of the time series and cross-sectional heterogeneity in these fixed
costs, we let the extent of the loss due to adjustment vary randomly over time as
firms may, for example, find better or worse matches or uses for their old
machines, or may face reorganizations of different degrees of difficulty.

As in standard (S,s) models, the resulting microeconomic policy is one of
inaction interspersed with periods of large investment or disinvestment. As in
standard search models, at each point in time the firm decides whether to
“accept” the currently offered fixed adjustment cost or to pastpone adjustment
and draw a new adjustment cost next period. The interaction between these two
mechanisms implies that, more realistically than in standard (S, s} models, the
size of adjustments varies both across firms and over time for the same firm.
During a given time period, firms with identical shortages or excesses of capital
act differently. Over time, the same firm reacts differently to similar disequilib-
ria in its stock of capital.
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Intuitively, the largest adjustment cost a firm is prepared to tolerate without
adjusting its capital stock decreases with the extent of its capital stock imbal-
ance. If the distribution of adjustment costs is nondegenerate, this implies that
the praobability that a firm adjusts for a given disequilibrium—a concept we
describe as the firm’s adjustment hazard—increases smoothly and monotonically
with the firm’s diseguilibrium in its stock of capital.”

Since we assume the number of firms is large and adjustment costs are
independent across firms, the adjustment hazard described above characterizes
actual sectoral investment at each point in time. Given firms® capital imbalances
at the beginning of a period, the fraction of units resizing their stock of capital is
determined by the adjustment hazard. Sectoral investment is the sum of the
products of the adjustment hazard and the size of the investment undertaken by
those firms that decide to adjust. Equivalently, it is the sum of the expected
investment by firms, conditional on their capital stock imbalances before adjust-
ing their capital stock.

Sectoral investment depends critically on the number of firms at each position
in the space of capital imbalances, thereby motivating our focus on the cross-sec-
tional density of disequilibria. The dynamics of sectoral investment are deter-
mined by the evolution of this density. The path of this density is driven by
the interaction of sectoral, firm specific, and adjustment cost shocks with the
history of shocks and actions contained in previous cross-sectional densities of
disequilibria.

2.2, The Firm
Net Profits

When the firm is not investing, its flow of net profits is

(1) (K, 8)=KP9—(r+ 8)K,

where K is the firm’s stock of capital, 8 is a geometric random walk shock to the
profit function that combines demand, productivity, and wage shocks, » and §
are the discount and depreciation rates, and 3 is a parameter that is less than
one, capturing our assumption of decreasing marginal profitability of capital,
either due to decreasing returns in the technology or the presence of some
degree of monopoaly power.® For mathematical convenience, we have written the

? This should be contrasted with its two limiting cases: the standard (S,s) model, where the
probability of a firm adjusting jumps from zero to one at the trigger points, and the standard linear
partial adjustment models, where this probability is independent of the size of the firm’s disequilib-
rium.

¥ For concreteness, let the production function be Cobb-Douglas and homogeneous of degree one
with respect to capital and labor, with capital share « < 1. Let the demand faced by the firm
be isoelastic, with price elasticity minus 7, [ < n < = It follows from these assumptions that fi =
aln— 101+ aln—1))<1.
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profit function net of flow payment on capital, (r + §}K, where the latter
represents the irrevocable commitments associated to purchases of capital.®

It is useful to replace # in the profit function by a variable with moare
economic content. We do this by defining the frictionless stock of capital of the
firm, K*, as the solution of the maximization of (1} with respect to capital, so
that

4= fK*(l_ﬂ),

where £=(r+ §)/8. Substituting this expression into (1), and defining the
disequilibrium variable

z=In(K/K*),
allows us to rewrite the profit function as
(2} I{z, K*) = m(2)K* = £(e® — Be")K*.

Figure 1 illustrates, and equation (2) implicitly defines, profits per unit of
frictionless capital, w(z).1°

¥ Since there are neither barrawing constraints nor bankruptey aptions, the solution to the firm’s
problem is unchanged by replacing flow payments for a lump sum. payment at the time of purchase,
That is, conditional on buying new capital, all that matters to the firm is the present discounted
value of payments, not when these payments take place.

¥ The parameters used to generate this figure are =04, r =006, and §=10.1.
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Adjustment Costs

When investing, a firm not only commits to pay for the capital acquired, but
also incurs adjustment costs. Since we wish to capture the intermittent and
lumpy nature of firms’ investments, we require these costs to exhibit some form
of increasing returns. These are many ways to do so. One possibility is to follow
Grassman and Laroque {1990}, and assume the firm sells its old stock of capital
at a discount when replacing it by a new one. An alternative, with simular
implications for our purposes, is to assume firms must shut down operations for
a fixed period of time when replacing capital. In the latter case, which is the ane
we pursue, the firm incurs an adjustment cost proportional ta foregone profits
due to reorganization:'’

Adjustment Cast = o{IT(K,8)+ (r+ 8)K} = wK P8,

where w represents the fraction of profits foregone due to the capital stock
adjustment. A derivation similar to the cne that led to (2} allows us to rewrite
the adjustment cost in terms of z and K*:

Adjustment Cost = wée P K*

where z~ denotes the capital imbalance immediately before adjustment.

Rather than treating o as fixed—as in standard (S, s} type models—we let it
be a random variable with a distribution function, G(a), independent across
firms and over time, whose realization is observed at the beginning of each
period. With this slight generalization of the standard fixed cost framewark we
capture—in an admittedly stylized form—twa realistic features: heterogeneity
in adjustment costs at any point in time, and time variation in these costs for any
given firm."> More importantly, it will be apparent in Section 3 that this
extension gives us an important degree of flexibility when estimating aggregate
investment equations.

Microeconomic Adjustrent

Given the increasing returns nature of the adjustment cast technology, the
optimal policy is obviously not one of continuaus and small investments but
rather one of periods of inaction followed by occastonal lumpy investment.
Therefare, the firm’s problem can be characterized in terms of two regimes:
action and inaction. Finding a solution to the firm’s problem is equivalent to
characterizing the partition of { w, z)-space into these two regions and specifying
firms' actions when located in the region where they act. In what follows we

" gee, e, Cooper and Haltiwanger (1993} for a model where the main cost of reorganization is
its opportunity cost.

*A more realistic formulation would lec adjusement costs exhibit some persistence at the
individual level. It would also allow for a distribution of adjustment costs that depends on aggregate
conditions. We do not incorporate these features intg our model hecause they complicate substan-
tially both the microeconamic and aggregation problems.
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present the basic steps involved in finding this solution. In Appendix A we
discuss the technical aspects and intermediate steps of the solution in more
detail.

Inheriting the stochastic properties of 8, K* follows a geometric random walk
(with drift):

- #* M’
K=K} je™,

where w, is LLd. and, throughout most of the paper, Normal. This implies that
when there is no adjustment, z, follows a random walk (with drift and Normal
innovations). Together with the i.id. nature of w, this assumption ensures that
the firm’s decision on whether to adjust its capital stock in periad ¢, and if so by
how much, is fully determined by the vector (z,, K, w,), which we refer to as
the “state of the firm.” The value of a firm with before-adjustment-disequi-
librium =z, frictionless stock of capital K*, and {current) adjustment cost
parameter w——which we denote by V*(z, K*, w)—is the maximum of the value
of the firm if it does not adjust, I'(z, K*}, and the value if it does adjust,
Vic, K*) — wfeP*K*, where ¢ is the optimally determined return point (see
below). In short:

(3) V*(z, K}, o) =max{(V(z,,K}), Vic, KF) — w P2 K}

The evolution of the value of a firm that does not adjust in the current period is
described by

(4) Viz, K*) = alz)K % A +7) BV (2, |, KX, 0,,)].

Since the profit and adjustment cost functions are homogeneous of degree one
with respect to K*, given z, so are the value functions Iz, K*) and
F*{z, K*, ). This allows us to reduce the number of state variables by relating
the problem in terms of the value per unit of frictionless capital. Let uv(z)=
Pz, K*)/K* and 0*(z, @) =V*(z, K*, 0)/K*. Dividing both sides of equa-
tions (3) and (4) by K*, and noting that

L o
e = dde e,
yields
(5) v*(z,, @) =maxf{o(z,),ulc} — @, £,

(6) U(Z'r)=ﬂ(z’)+dIEf[U*(ZHl:CU;+L)€_AZHl]:

with = (1 — 8) /(1 + r). Figure 2 depicts in an example the basic setup devel-
oped up to now.* This figure shows how u(z), v{c) — w&e?”, and v*(z, w)

Y Parameters; B=04,r=006, §=0.1, the mean and standard deviation of the logarithm of K¥
are  and 0.1; the distribution of adjustment costs is Gamma with mean .17 and coefficient of
variation 0.16. All the numbers are broadly consistent with our estimates and assumptions in the
empivical part of the paper.
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determine the trigger points, given a particular realization of the adjustment
cost. The solid line illustrates the value of a firm that does not adjust in the
current pericd. The dashed line represents the value of a firm that decides to
adjust, given a realization of o. The maximum between bath lines describes
0*(z, @), and the inaction range—for a given w—corresponds to the interval
between the intersection of the two lines.

It follows directly from maximization of the value of a firm that decides to
adjust, v(c) — wée ™, with respect to the return point ¢, that the maximum of
v(z) and v*(z, w) is abtained at z = ¢ and that this return point is independent
of the initial disequilibrium.?

The solution also can be characterized by the policy function, £2(z), defined
as the largest adjustment cost factor for which the firm finds it advantageous to
adjust given a capital imbalance z. From the value matching condition that
equates the two terms on the right-hand side of equation (5), it follows that

(N D(z) =€ le P ele) —vl2)),

b Proposition Al in Appendix A shows that the Bellman equation obtained by sobstituting +(z,)
from {6} irnta (5) has a unique solution, which is continuous and bounded. Even though the functions
vz} we abtained via value iteration when performing estimation always had 4 unique maximuam. we
have been unable to show this generally. It foliows that, strictly speaking, the retuin point ¢ should
be interpreted as ane of the points where (z) attains its maximum, say the smallest value. [n
Proposition A5 we show that the set of maxima, and hence of possible retura points, is finite.
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which implies £2(c) = 0. Differentiating (7) with respect to z, evaluating the
result at z = ¢, and using the first order condition v'(¢) = 0, yields the additional
“smooth pasting” condition £2'(c)=0.

Figure 3a illustrates the function £2{z} for the example in Figure 2, where the
distribution of adjustment costs is a Gamma. As follows from equation (7}, if the
firm’s disequilibrium is close enough to z =, it will only adjust for arbitrarily
small adjustment costs. From then on, £2(z) increases with |z — ¢|.

Figure 3b depicts the inverse of the function £2(z). We label L(w) and I w)
the segments of the curve below and abave ¢, respectively. These functions
correspond to the maximum shortage and excess of capital tolerated by the firm
for any given realization of the adjustment cost factor w. That is, for any fixed
w, they describe a standard (L,e,U) policy.’® The area enclosed by the two
curves corresponds to the combinations of disequilibria and adjustment cost
factors for which the firm chooses not to adjust.'s

The shape and location of the function 2z} and its inverse, (L{w), ¢, I w)),
depend on the entire distribution of adjustment cost factors, G{w). A given
realization of the adjustment cost factor will not generate the same inaction

BAn(L, . U) palicy corresponds to a two-sided {5, 5) madel. The natation L, I, and ¢ stands for
lower baund, upper baund, and “center,” respectively. See Harrison et al. (19833

* Proposition. A2 in Appendix A derives formally the existence of f2{z}, and Praposition A3
shows that it is an anpalytic function, and therefare has derivatives of all arders. Proposition A4
shows that (2(z) tends to Infinity as |z| tends to infinity. Yet we have not been able to show that
(K z) is unimodal, and therefore have no formal praof that, conditional on «, the optimal policy is
af the (L, ¢, I} type. It should be nated, though, that all the policies abtained pumerically when
estimating the parameters in Section 3 were unimaodal.
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range for different distribution functions G{w). In particular, a low value of «
is more likely to lead to action when it comes from a distribution of adjustment
cost factors with a high rather than a low average value.

Adjustment Hazard, Expected Investment, and Ergodic Density

Adjusiment Hazavd: Above we showed that for any given o the firm follows a
simple deterministic policy with respect to z: actions are taken only when z lies
outside the (L(w), U w)) interval, in which case investment occurs so as to bring
z back to ¢. With aggregation in mind, here we reduce the amount of informa-
tion contained in the policy. Rather than conditioning on w, we only use
information on its distribution and ask the question: what is the probability that
a firm with disequilibrium z adjusts?

The answer to this question is contained in what we call the adjustment
hazard. Let x =z — ¢ denote a firmy’s imbalance with respect ta its target point.
A firm with deviation x adjusts only if the current adjustment cost is small
enough to make adjusting profitable (i.e., if w < £2(x + ¢)), which means that the
probability of a firm adjusting, conditional on its disequilibrium being equal to x
(the adiustment hazard), is given by

(8) Alx) = GLQx + ),

where G(w) denotes the cumulative distribution function for the adjustment
cost factor w. For example, if Glw) is a Gamma distribution with mean pé and
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variance p¢?, the adjustment hazard is

i
Alx) = GO p=lg=w/b g,

i

¢PI (p) j{;
Figure 4a shows the adjustment hazard function for three different gamma
distributions of adjustment cost factors. These distributions differ in their mean
and variances: the solid line corresponds to an exponential distribution
{mean and standard deviation of (.1); the long dashes correspond to a high
variance and mean distribution (mean: 80: standard deviation: 282), while
the short dashes describe a low variance and mean distribution {mean: 0.14;
standard deviation: 0.044). These examples illustrate the range of cases covered
by our setup. Figure 4a shows that when the variance of adjustment costs is low,
there is a range of adjustment costs where the firm (almost) never adjusts since
adjustment costs are (almost) never small enough to justify it; the standard (S, 5}
—ar (L,¢,U)—case is an extreme version of this. Conversely, when the vari-
ance of adjustment costs is high, and so is their mean, the decision of adjust-
ment is largely motivated by the adjustment cost draw rather than by the firm’s
disequilibrium; in the limit, adjustment costs are independent of the firm’s
disequilibrium, yielding the standard linear partial adjustment model.

In Proposition B2 in Appendix B we show that A(x) is differentiable, with
A0)=0 and lim,, ., A(x) = L.

Expecied Investment: A firm with disequilibrium x has a probability A(x) of
adjusting its stock of capital and, if it does so, it invests

(e —e)K* = (e — De’K} = (e™* — DK (x).

0.5

Alx]
D3 04 0S5 08 07 DB

0.2

0.1

=1.0 . . -0z ~0.0 . . . 0.8
X

FIGURE 4A
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Thus the average investment of firms with disequilibrium » immediately before
adjusting their capital stock in period ¢ is

(9 E [7(x)|x] = A(x)(e™ — 1}K,(x).

Figure 4b depicts expected investment carresponding to the hazards in Figure 4a
(with K (x)=1). The nonlinear-convex nature of expected investment is an
important feature of the model, playing a key role in shaping aggregate invest-
ment dynamics. It says that incentives to invest rise more than proportionaily
with a firm’s disequitibrium."”’

Ergodic densitny: We conclude our characterization of microeconomic behavior
by stating that the disequilibria through which a firm goes aver its lifetime, have
an invariant density. The formal proof, which also shows that convergence takes
place at an exponential rate, is given in Appendix B. The nonlinear nature of
microeconomic adjustment, with relatively small adjustment for small imbal-
ances, imprints the opposite pattern on the ergodic density: steeper hazards
translate into relatively less mass in the tails of the corresponding invariant
density 11 exchange for more mass in the regions of low values of the adjustment
hazard (i.e., relatively platokurtic)."

E{ /K [0}
0.6 1.0 14

0.2

-b.2

1.0 -08 -0.6 -0.4 -0z =00 0.2 0.4 05 a8
=

FtGURE 4B

" This is a feature not shared by the standard quadeatic adjustment cost model hut it is certainly
not exclusive af madels with. fixed, or evenl noneanvesx, adjustment costs.

% The U.S. manufacturing plant level data studied in Caballera, Engel, and Haltiwanger {1995}
revealed that the average observed distribution of disequilibeia 5 considerably more platokuctic than
the average distribution of shacks affecting these plants.
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2.3. Sectroral Investiment
Sectoral Investinent and the Cross-Sectional Density

Let K7, 14, K,(x), and I(x) denote the aggregate (sectoral) stock of capital
and gross investment, and the stock of capital and gross investment held by firms
with disequilibrium x at time ¢ (before adjustment).

Since adjustment cost shocks are i.i.d. across firms, it follows directly from (9)
that

(10) L(x)=(e™ — 1) A(x)K (x),
where K,(x) denotes the average stock of capital of firms with imbalance x.

Letting f(x, ) denote the cross-sectional density of disequilibria just before
adjustments take place, we can obtain an expression for aggregate investment:

I = (™ = 1) ACOK,COf(x, 1) dx.

Dividing through by K/ and rearranging terms, we obtain an expression for
the aggrepate investment /capital ratio:

A
an = [(e7 = DA flx,1) dx
K.(x) _
+f(e—x__ 1)A(x)( Kj - 1]f(x,r)dx.

The second term on the right-hand side of (11) drops out if (K,(x) — K*) and
{e™ — 1) A(x) are uncorrelated. Since such an assumption simplifies computa-
tions substantially, we make it and obtain an approximate expression for the
aggregate investment /capital ratio:

I -
(12) P = [(em = D AGOflx, 1) dx.

In Appendix C we describe in detail the additional computational burden of
using (11) instead of (12), and present the results of Monte Carlo simulations
showing that the cast of the approximation is only minor.™

[t is apparent from (32} that since (e™* — 1) A(x) is generally nonlinear in x,
aggregate investment depends not only on the first but also on higher moments
of the cross-sectional distribution of disequilibria.

¥ The results in Caballero, Engel, and Haltiwanger (1995) are reassuring on this respect. There
we used comprehensive establishment level data for U.S. manufacturing during the 70s and 80s, and
documented a very close empirical fit between the actual and approximate series during that period.
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The Linear /Partial Adjustment Extreme

An exception to the statement in the previous paragraph occurs when the
adjustment hazard does not depend on x, @izd f has most of its mass near x =0,
$o that e™ — 1 == ~x. In that case

A
; -
(13) F: '—AGX“

!

where A, denotes the constant hazard, and X, denotes the average disequilib-
rium before adjustment. Equation (13} corresponds to the well known partial
adjustment model (PAM), and also coincides with the standard linear equation
arising from the quadratic adjustment costs meodel. This is the only adjustment
hazard that does not require cross-sectional information on the right-hand side
of the aggregate investment equation. Indeed, a few steps of algebra aliow us to
go from equation (I13) to the standard expression:™

!,*{ [A[
(14) S W R ER [y put iy
K;A ‘ ‘ e Kr/{—i

where ¢, represents an aggregate shock, to be defined in the next paragraph.

Sectoral Equilibrium and Cross-sectional Dynamics

Shocks to wages, demand, and productivity drive the dynamics of frictionless
capital. We decompase these shocks into sectoral shocks, v, and firm specific
(idiosyncratic) shocks, e,:

Ho__ # [AFS -
Kr _K:—[e ' 1

which implies that when the firm does not adjust, the disequilibrium measure x
evolves according to

Ax, = —(5+1v,) — ¢,

where capital depreciates at a rate § from ane period to the next, We assume
these shocks are exogenous to the firm and the sectar.

Between two consecutive periods, the cross-sectional distribution of disequi-
libria changes as a result of firms' adjustments, depreciation, sectoral, and
idiosyneratic shocks. Since we are working in discrete time, it is impertant to
describe the timing convention we adopt for events within each period. We

¥ Let k, and &7 denote the average of the lagarithm of the pre-adjustment stack of capital and

the frictionless stack of capital, respectively. We define ¢, = Ak?, and note that Ak, = ({7 /K1)
— §. Combining these twa expressians with the fact that

K=k, — ket = Ak — AT+ X,

r—1

vields (14
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denote the cross-section density at the end of period r—1 by flx,c—1)
Depreciation and the aggregate shock corresponding ta pericd ¢ follow, result-
ing in the density f(x,¢). Next come adjustments, as determined by the hazard
function A(x). Peried ¢ concludes with the idiosyncratic shocks. The final
density is f(x, 1), and the cycle starts again. Recalling that a positive shock leads
to a decrease in x, we can summarize this chain of events as follows:

(15) flx,)=f(x+8+u,,t—1),

a8 0= | [ 400 8.2

+[[1 — Alx+ )Iftx+e,0g.(—€) de,

where g.(¢e) is the probability density for the idiosyncratic shocks. The integro-
difference equation describing the evolution of the cross-sectional distribution
from one period to the next follows directly from equations (15) and (16}

(17) f(x;r)=|:fA(y)f(y+5+U”r—1)dy g:(_‘x)

+ [[1= AGc+ Of(x + e+ 54 0,,1 = Dg(—e) de.

From equations (12) and (15) we obtain the following aggregate investment
equation:

A

I
(18) E7 =f(e“"'— DA f(x+ 8+u,,¢— 1) d.

Combining equations (18) and (17) we can determine the sequence of aggregate
investment determined by an initial cross-section distribution, f(x,0}, and a
sequence of aggregate shocks, {v,}. For details see Appendix C. We turn to
estimation issues next.

3. EMPIRICAL EVIDENCE: U.5. MANUFACTURING INVESTMENT
3.1. Data

Our data are constructed from annual gross investment and capital series for
21 two-digit manufacturing industries from 1947 to 1992.*' All series are in 1987
doilars, and the stocks of capital correspond to the series used by the Bureau of
Labor Statistics for their productivity studies.” Since capital stocks are end-of-
year, our measures of the investment/capital ratio used in estimation start in

' We have 21 rather than 20 sectors because Motor Vehicles is sepatated from Transpartation
equipment.
* This is ane of the three capital stock series reported by the Bureau of Ecanamic Activity.
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1948. We report separate results for equipment and structures panels; each has
945 observations.

3.2. Econametrics

The econometric prablem consists of estimating the parameters that charae-
terize (a) firms’ profit functions, (b) the initial distribution of disequilibria,
(c) the distribution of adjustment costs, (d) the distribution of idiosyncratic
shocks, and (e) the process generating aggregate shocks. In this subsection we
outline the main features of the estimation procedure; a detailed description is
presented in Appendix C.

For tractability, we limit the number of parameters being estimated to those
characterizing the distribution of adjustment costs or, equivalently, the hazard
function. As far as the remaining parameters, we either fix them (profit function
and distribution of idiosyncratic shacks), show that their role is limited within a
reasonable range (initial distribution of disequilibria), or concentrate therm out
of the likelihood function (process generating sectoral shocks: individual effects
and cross-sectoral variance-covariance matrix). Since identifying nonlinearities
from a purely time series (as opposed to regressions) dimension requires a large
number of observations, we impose a hazard function or a distribution of
adjustment costs that is common across sectors {(depending on whether we
estimate a semi-structural or structural model-—see below).

The sources of randomness in our estimation procedure are the sectoral
shocks, which we assume are multivariate Normal and independent over time,
for most of our empirical analysis.

We approximate the initial sectoral cross-sections by the invariant cross-sec-
tion of an individual plant, and proceed to use the Markovian nature of the
process generating cross-sectional distributions to generate these distributions.
For each sector, and at each date, the cross-sectional distribution is updated as a
function of the sectoral shock, using an wmplicit law of large numbers at the
micreeconomic (firm) level, The observed sectoral investment rate is a nonlinear
function of the current shock and the distribution prior to this shock-—this
function is one-to-one in the shock., Conditional on the initial distribution, the
sequence of sectoral shocks and the cross-section distributions can be recovered
from the time series of sectoral investment rates. The likelihood is calculated
using these sectoral shocks. We alse need to caiculate the corresponding
Jacobian terms, which correspond to the elasticities of sectoral investment rates
with respect to sectoral shacks. These elasticities are a byproduct of the
calculation of sectoral shocks.

3.3, Semi-Structural and Structiral Models

We estimate two basic models. In the first ane (semi-structural}, we estimate
directly the parameters of an ad-hoc adjustment hazard. While in the second
one (structural), we estimate the adjustment cost parameters and obtain the
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implied hazard via dynamic programming. Both of these madels yield increasing
hazards,” but include a constant hazard as a limit case.

Semi-structural: Although our main goal in the paper is to estimate and assess
the structural model, there are good reasons to start by estimating a less
structured version. It allows us to search and test for the presence of an
increasing hazard more directly, and it facilitates comparisons with standard
l[inear models. Furthermore, by assuming that the adjustment hazard is an
inverted Normal:

(19) Alx) =1 = e to=tax’

with A, =0 and A, =0, we are able to cbtain accurate computations and to
reduce estimation time significantly (by a factor of 12) by keeping the cross-sec-
tion distributions within a closed family of mixture of Normals (see Appendix O).

Structural: Rather than estimating the adjustment hazard directly, in this case
we estimate the parameters of the adjustment cost function and obtain the
hazard from the solution of the dynamic optimization problem presented in
Section 2. Adjustment costs are drawn from a Gamma distribution:

Glw) = e”"¢dy,

1 @
-1
qb”F(p)j;J n’

which has mean g =p¢ and a coefficient of variation cv, = 1/+/p . We esti-
mate p, and cv,. .

As for the other structural parameters, we assume an interest rate, share of
each type of capital, and markup of 6, 15, and 20 percent, respectively,’* as well
as depreciation rates for equipment and structures of 10 and 5 percent per year,
respectively.” We estimated the standard deviation of idiosyncratic shocks, a,,
abtaining estimates in the range of 5 to 15 percent. Since these were not
estimated very precisely, and comparisons across models are easier if idiosyn-
cratic variances are similar, we only report results where we have imposed
g, = 0.1 (both, in semi-structural as well as structural estimation).

& By increasing hazard we mean a hazard that increases with |x|, Le., that is decreasing for x <0
and increasing for x > 0.

¥ These parateters imply a value of 8 around 0.43 if the praduction function is constant returns
and all other factors of production {including the other type of capital) are fully flexible, around (.3
if all factars but the other form of capital are flexible, and around 0.15 if all other factors are fixed.
Qur conclusions are robust ta reasonable variations of 2, but we do not have engugh power to
identify this parameter i conjunction with those that we estimate. The results we report assume
Ag=104

# Although there is a slight upward trend in the sample, these depreciation rates are consistent
with the average depreciation rate computed from the ratio of actual depreciation to net capital
stacks reported in Fixed Reproducible Tangihle Wealth in the United States, 1925-89. In any event,
it follows from our description in Appendix C that, conditional on the initial cross-section, the
depreciation rate is confounded with the mean of aggregate shocks. Thus our choice of depreciation
rate only affects the initial eross-section. And since we discard the first three periods when
calcuiating the likelihgod, this effect is minar.
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3.4, Main Resuits

Table [ contains our main results. The first two columns present semi-struct-
ural and structural results for equipment investment, while the last two do the
same for investment in structures. All estimated models allow for individual
effects on the sectoral shocks, and include a free additive constant that is
COMMON across sectors.

Semi-struciiral: The semi-structural results allow us to reject the constant
hazard model, in favor of an inereasing hazard one. The increasing hazard
parameter, A,, is significant at the one percent level in both cases. The
estimated hazard function suggests that the probability that a firm adjusts its
capital stock of equipment increases from about 14% for small imbalances to
45% when its imbalance is 40%, while it goes from clase to zero for small
imbalances to about 329 for a 40% imbalance, in the case of structures. The
sharp nonlinearity can also be captured through the expected investment /capital
ratjo (conditional on the imbalance); for equipment, it goes from close to 0.05 at
a 20 percent imbalance ta 0.23 at a 40 percent imbalance, while for structures it
goes from 0.02 to 0.16, for the same imbalances.

Structural: The results of the structural models confirm the semi-structural
increasing hazard findings. Moreover, the likelihoods rise, especially so for
structures,

The estimates of the mean of the distribution of adjustment costs (the u_s)
indicate that the average adjustment cost drawn is the equivalent of 16.7 percent
of a year’s operational profits for equipment and 22.8 percent for structures.
Since firms can “search” for a low realization of adjustment costs, these are
upper baunds for the average casts effectively paid by firms when going through
a major adjustment episode. Indeed, the average costs paid are 11.1 percent for

TARLE 1
Main RESULTS

Equipment Structures
Patitneters Semi-steuenieal Struceural Semi-structucal Structural
Ao 0.155 0.000
(0.067) (0.054}
As 2.804 2437
{1.165) {0.878}
constant 0.057 —{.006 0013 0.019
(0.013) (0.016) (0.006) (0.002)
&, 0.166 0.228
{01.029) (0.046)
ov, 0317 0.066
(0.10% (0.009)
LLK 2430.2 24314 268124 2637.2
LLK-NADJ 2315.2 23152 2497.0 249710

Narey: Standacd deviatiung in parenthesis. LLK: log-Tikelihood. LLKE-MNATY: log-likelibaad without
adjustenent casrs /dynantics.
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equipment and 21.4 percent for structures. The difference between the uncondi-
tional and conditional {on adjustment) means rises with the coefficient of
variation of these costs, which explains why adjustment costs actually paid for
equipment are one third less than the mean adjustment cost faced by firms (see
cv, ) while in the case of structures both means are very similar.

Comparing the last two rows of Table I illustrates the goodness-of-fit of the
model. LLK represents the log-likelihood of the model while LLK-NAIDJ
represents the log-likelihood of a2 model with no adjustment costs or dynamics
{(i.e., only a constant). The likelihood ratio test statistics for both equipment and
structures are aver 200,

3.5, Simple Alternatives

We view the microeconomic foundation of our approach as one of its main
virtues; however in this section we look purely at the statistical advantage of our
structural models over simple linear counterparts. We do not intend to conduct
“horse races” against alternative investment models but want to provide a
simple metric to assess the contribution of the nonlinearities we estimated to
the time series properties of aggregate investment.

The first obvious step is to compare our model with the “almost” nested
PAM. As we argued abave, the constant hazard model (A, =), together with
the approximation e * — 1 = —x, yields the standard PAM, which corresponds
to estimating an AR(1) for each sector’s aggregate Investment series. For
comparability with the structural model, we constrain the correlation coefficient
to be the same across sectors: 8

[_A I-A .
it—
ey =a;+p 7

it =1

+u

i

More generally, we also run an AR(2) with unconstrained autoregressive coef-
ficients for each sector:

A A A
If'r I'!—l I';—l

i i
=£I-+.O1- A —]—pz ~
J 1[{':—1 !Ki:—i

I

+ 0y,

In both cases we preserve the assumption of jointly Normal aggregate shocks,
and allow for individual effects. We look at within and out-of-sample criteria,
and find widespread evidence supporting the structural nonlinear maodel aver
the linear representation for bath equipment and structures.

Withire Sample Criteria

The likelihoods of the linear models are uniformly lower than those of the
correspanding structural models, even for the AR(2)s—which have 39 parame-

% Recall that the structural model has the same distribution of adjustment costs acrass sectars.
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ters more than the nonlinear structural models (the likelihoods for the linear
models are shown in Table [I). But comparing the likelihoods is not strictly
carrect, since the linear models {especially the AR(2)s) are not nested in our
structural models. Instead, we use the test for nonnested models developed by
Vuong (1989) and Rivers and Vuong (1991).

Let {, and {, denote the maximum value attained by the log-likelihood for
models 1 and 2, T denote the number of periods considered when calculating
the likelihood (42, in our case), #, and », denote the number of parameters for
models 1 and 2, respectively, and S denate the Newey-West estimate for the
variance of the time series of likelihood differences. The null hypothesis is that
both models are VT -asymptotically equivalent;?” should this be the case the test
statistic

I =4 —4(n, —ny)log(T)

A kl

AYA

Q0 V,=

has a Standard Noarmal distribution. Positive values of I/, , indicate evidence in
favor of model 1; negative values evidence in favor of model 2.%

Table II presents Vuong’s statistics and the p-values for the test that both
models (linear and nonlinear) are equally close to the “true’ model, against the
alternative that the (nonlinear) structural model is closer. It is apparent that the
null hypothesis is rejected in favor of the alternative even at very low signifi-
cance levels.

TABLEII
NoNKESTED MODELS TEST: NORMAL SHOCKS

Equipment Structires
PANM ARI-UNC Eahi ARL)UNC
Vuong statistic 2.6t 4.25 2492 4.07
p-value 0.0043 < (.00 0.0018 < Q.00
Log-Lik. 2387.2 2419.0 2533.2 2578.5

Mates: Yuang statistic erleulated as in (20) All test stalistics compare the structucal model
estimated in Table [ with the madel in the table. [t bath madels are "equally gaod,” the asymptatic
dizteibution of the statistic is Seandard Normat, Large pasitive valugs pravide evidense in favor of
the structural modetl.

e, hmT_,{ur(I -{,1=0

* Notc that: First, the numerator of () contains 2 penalty termi—the Bayesian Information
Criterion, BIC—that carrects for differences in degrees of freedom bctween hoth models. Secand,
denating thc sum of sectoral likelihoods for model £ at time ¢ by {; , i= L2, and d =1, — {5, we
have that § in the denaminator of ¥ 5 18

. i
S(T,q) = Y0+21§ |i1 - qTI]‘}’J-\

where y; denates the sample autocorrelation of order f of the 4, time series. Since in all cases
$UT, 4} does not vary much for values of g larger than 7, we choase g = 8 when calculating § in (20).



804 R. J. CABALLERO AND E. M. R. A. ENGEL

One possible reason for the bad relative performance of linear models is that
we have assumed that aggregate shocks are Normally distributed. Sectoral
investment rates, on the other hand, are clearly not Normal; the skewness and
(excess) kurtosis coefficient of (standardized, for every sector) investment rates
are (.61 and Q.74 for equipment and (.76 and 0.87 for structures. Obviously,
linear models with Normal errors cannot account for these departures from
Normality. The innovations generated by the best partial adjustment model and
best second-order autoregressive models also depart from Normal, as can be
seen in Table IIL: Their skewness and kurtosis coefficients are 0.49 and 1.15 for
equipment and .95 and 1.88 for structures in the partial adjustment case, and
0.38 and 1.00 for equipment, and 0.86 and 1.65 for structures in the AR(2) case.
All these numbers are significantly different from zero (the Normal case) at the
0.001 level (estimated via bootstrap). The last two rows show that the increasing
hazard model generates innovations that are closer to Normal than its linear
and constant hazard counterparts. The estimated skewness and kurtosis coeffi-
clents are considerably smaller, and both skewness coefficients do not depart
significantly (at the 0.05 level) from their values under the Normality assump-
tion. The increasing hazard model does not need to introduce nearly as much
skewness and kurtosis in aggregate shocks to account for investment behavior.

Normality is the natural assumption when aggregate shacks are conceived as
the sum of a wide variety of small shacks with limited dependence (by the
Central Limit Theorem). In spite of this, we momentarily relax this assumption
in order to cansider shocks that admit skewness and kurtosis properties similar
to those observed in sectoral investment /capital ratios. For this purpose, we
generalize the distribution of the residual to consider convex combinations of
Normal and log-Normal distributions. The log-Normal component does not add
significantly to the structural model, while the linear madels assign most of the
weight to the log-Normal component. For this reason we compare the structural
models with Normal shocks versus the linear models with log-Normal shocks in
Table IV. Although the likelihood in the linear madel improves substantially
with this modification, Table IV shows that the test for nonnested models still
favors the (nonlinear) structural models by a wide margin. In fact, the reduction

TABLE IIT
SKEWNESS AND KURTOSIS FOR INNOVATIONS

Equipment Structures

Meadel Skewness Kurtosis Skewness Eurtosis

Part. Adj. (.49 1.15 0.95 1.88
(0.13) (01.36) (0.15) (0.65)

AR(Z) 0.38 1.04 0.86 i.65
(0.12} {0131} ©.14) (0.60)

Structural —Q.04 0.65 017 0719
(0.11} {0.20) (013 {0.34)

MNote: Standard deviations, ebrained via bootstrap, shown in parenthasas.
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TABLE [V
NONNESTED MGRELS TEST: LOG-NORMAL / NGRMAL SHOCKS

Equipmient Steuciures
PAM ARIIEUNC PAM AR{ILLINC
test (Normal) 242 797 .57 4.53
p-value 0.0078 < 0.0001 0.0002 < {.0001
Log-Lik. 2409.3 24538 2611.3 26786

Mater: Voong, statistic caleulated as in (201 All test siatistics compare the structural model
astimated i1 Table | with the madel (0 the table. Tt both models are “equally gaed” the
asymptatic distributian af the sratistic is Standacd Normal. Large pasitive values pravide avi-
dence in tavor af che structural madel.

in the denominator due to the increased precision of the test (the likelihoods
become more correlated across models) more than outweighs the increasge in the
likelihaood of the linear madel.

Qut-of-Sample Criteria

Next, we evaluate the out-of-sample forecasting performance of our model.
For this purpose we reestimate the nonlinear structural and AR(2) models
dropping ten percent of our ohservations (the last five years for each of our 21
sectors), and generate the one-step-ahead forecast distributions, for each sector
and year out of the sample. We only evaluate the model’s performance relative
to that of an AR(2) using a standard Mean-Square-Error criterion, although this
reduces the potential forecasting edge of nonlinear models® We postpone
further discussion of forecasts’ higher moments until the conclusion.

Table V reports, far each investment type, the average (across sectors) MSE
for each year (first two columns), and the percentage increase in MSE generated
by the AR(2) model over the nonlinear one (third column). Except for 1988, the
structural nonlinear model systematically outperforms the AR(2) representation.
This is particularly true for structures, where the gain is over 35 percent during
four out of the five years for which we generated out-of-sample forecasts.

TABLE V
AVERAGE MSE For 1-STEP-AHEAD ForRECASTS: 1988-92

Equipment Structures
Year AR{1] WMODEL In{{1t /2] ARL2] MODEL Indf el /021
88 0591 0.640 —0.075 1.306 (.340 —0.092
39 0.240 0.230 0.038 0.371 (1.220 (L502
g0 0.308 0.270 .131 0,207 Q.150 1.359
91 1.566 0.540 (1044 0.507 (.350 (.371
92 0,399 0330 0.194 .518 .340 1.425

Nete: The parameters were estimated using data up to 1957, MSEs are multiplied by 10°.

M See Ramsey {1996) for arguments on the bias against nonlinear models inherent in MSE
COMPArisons.
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This favorable evidence for the nonlinear model is reinforced by Table VL It
reports, for each investment type, the average (across years) MSE for each
sector for the AR(2} and nonlinear models (first two columns), and the percent-
age increase in MSE generated by the AR(2) model aver the nonlinear cone
(third column). At the bottom of the table, we report the percentage increase in
average (across sectors and time) MSE generated by the AR(2) model aver the
nonlinear one, as well as the median (across sectors} increase. The sectoral
dimension is one along which we would have expected the nonlinear mode] to
do relatively poorly, since in order to gain statistical power for the nonlinearities
we were forced to impose the same distribution of adjustment costs across
sectors, which is not likely to hold too closely in the data. The AR(2), on the
other hand, has no constraints across sectors. Table VI shows that even under
this unfavorable metric the structural model outperforms the unconstrained
AR(2) representation. Again, this is particularly true for structures, where the
gain in terms of MSE is over 13 percent for the median sector, and above 30
percent for the average MSE.

TABLE VI
SECTORAL AVERAGE MSE FOR |-STEP-AHEAD FORECASTS: 198892

Equipment Steucuures
Sectar ARZ) MODEL Inff1),7(2)) AR MODEL In 1],7¢2))
20 0.59 0.780 —0.425 0.742 0.150 1.571
a1 (.085 0.084 0.003 0.117 0.150 —-0.233
22 0.343 0.310 0.091 0.221 0.120 0.612
23 0.243 0.110 0.781 0.278 0.094 1.088
24 0160 0.240 — (1405 0.342 .250 0.333
25 0.083 0.092 - {105 (.560 (1.260 0.760
26 .034 0.063 —0.707 0.633 0.4004 0.456
7 1.620 1.710 — {055 0.386 (1.720 —0.619
28 0.129 0.180 -(1.341 (1.313 (1.4030 —0.247
29 0.098 0.100 — {1036 (1L.628 0.570 0.097
30 0.272 0.260 0.035 0.417 (.088 1.560
31 0.082 0059 —(.097 0.063 (1.054 1.159
32 1.433 1.000 0.357 1.483 1.000 0.392
33 0.078 0076 0.023 0017 (L024 —0.352
34 1.739 1.410 0.211 0.201 0.270 —0.288
35 0.551 0.730 -(.276 0.353 (1.400 —0.127
36 0.506 0.420 (1181 0.328 4.390 —0.170
371 0.310 0.220 (1338 0.099 (1150 —0.411
37 0.241 0.270 —(.124 0.494 4.075 1888
38 0.221 0.200 .120 (1184 .210 —0.124
39 0.099 0.072 1.319 (1.162 4.100 0.467
In(L, (1) /2,020 — — 0.047 — — 0.312
Median 0.241 0.220 (L003 (1.328 1.210 0.159

Note: The parameters were estimated using data up (o 1957 MSEs are multiplicd by 107,
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3.6. Dynamic Implications of Increasing Hazard Madels

Perhaps the main distinctive feature for the model we have estimated,
compared with its linear counterparts or a constant hazard model, is that nat
only average investment by those that are investing but also the number of firms
that choose to invest at any point in time fluctuates over the business cycle. This
is a realistic feature according to the establishment-level evidence in Doms and
Dunne (1993}, Among many interesting facts, they show that the number of
plants going through their primary investment spikes (i.e., the single year with
the largest investment for the establishment), rather than the average size of
these spikes, tracks closely aggregate manufacturing investment over time.

In terms of our model, this flexibility in the number of firms investing implies
that the extent of the response of aggregate investment to aggregate shocks
fluctuates over the business cycle. Figure 5 depicts the paths of the median
(across sectors) derivatives of aggregate investment with respect to aggregate
shacks for equipment and structures.™ It is apparent that this “index of
responsiveness” fluctuates widely over the sample. Moreover, it is strongly
procyclical: Its correlations with aggregate shocks and aggregate investment are,
respectively, .79 and 0.89 for equipment, and 0.72 and 0.39 for structures.*!

There are traces of the cyclical features of our nonlinear maodel in our
out-of-sample forecasts as well. The MSE gains of our model over the linear
AR(2) are particularly pronounced during periods of high activity. To show this,
we proceed in three steps: First, we construct, for each sector, a standardized
series of the difference of the absolute values of the forecast error of the AR(2}
and the structural model, Afef[:

|€{_.{::m- — |€J{.J|J’J
Alefl= ~——"—,
i, def

M 1f we define v{s) as the right-hand side of (18) evaluated at u instead af ¢, then this index is
equal to the derivative of y evaluated at . Making the change of variable v =x — ¢ in the integral
that defines y(1:) and differentiating uader the integral leads to

yin) = f[e"l"[fl(u —e) = (et = DA — e N+ 8,0 — 1) du.

Adding and subtracting A(z — v} to the first term in the integral, using (18) and changing variables
gives

) =yl,) + fﬂ.(.\f}f(_r F8+e,0—1] d_r—f(e"" YA S ey £~ 1) dy.

Alternatively, making the approximation (¢ ™ — 1) = —x before diffecentiating, we obtain an index
of responsiveness equal to y'{r,} — (v, ), which is constant for the coustant hazard case (PAM, in
that case). The figure abtained with this alternative index is qualitatively identical to Figure 5,
alethgugh the standard deviation of the index is about 3{ percent less than that of the index reported.

"' The carrelations with lagged investmentfeapital ratios are 0.60 and (.13, for equipment and
structures, respectively.
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index of responsiveness
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FiGURE 5

where €/ denotes the forecast errors {ar and nf stand for AR(2) and nonlinear
model, respectively), and o, denotes the standard deviation of the difference
in the absolute value of the farecast errors. Second, for each sector, we sort
these standardized series by one of the following indicators of activity: the
sectoral aggregate shack, v, the level of the sectoral investment /capital ratio, y,
and the sectoral index of responsiveness, dy/dv. And third, we average across
sectors the sorted standardized series.

Table VII reports these averages for times when the sorting variable was
below and above its median. With only one exception, all the entries suggest
that a substantial fraction of the hetter performance of the nonlinear mode]
comes from periods when the sectoral indicators of activity (shock, investment,
and sensitivity index) are high. For example, we find that periods when aggregate
shocks are below their median, achieve a forecasting-performance improvement
which is 0.286 standard deviations lower than the average MSE gain for
equipment, while it is 0.056 standard deviations lower for structures. Conversely,

TABLE VII
STANDARDIZED DIFFERENCE [N ABSOLUTE VALUE OF FORECAST ERRORS (AR2-MoDEL)

Equipment Strustures
Sarr by 1 Hort by v Sart by dv/de Sort by 1: Sort by y Sart by dy fdi
Belaw median —(1.286 —(.189 —0.043 — (L0586 (L1300 —(.013

Above median 1.255 (0.185 0.155 0.158 —{.033 092
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when aggregate shocks are above their median, the forecasting-performance
improvement is 8.255 standard deviations higher than the average MSE gain for
equipment, while it 15 0.158 standard deviations higher for structures.

4, FINAL REMARKS

In this paper we derived and estimated a time series model of sectoral
investment that builds frem the realistic cbservation that lumpy adjustments
play an important role in firms’ investment behavior, but that allows for the
empirically appealing feature that adjustments do not need to be of the same
size across adjusting firms and for a firm aver time.

Using a nonlinear aggregare time series procedure, we estimated the distribu-
tions of fixed adjustment costs faced by firms. The adjustment hazards implied
by our estimates are nonconstant: they leave a significant range of inaction, and
increase sharply thereatter. Depending upon the history of shocks, the estimated
hazards have the potential to magnify or dampen the response of investment to
aggregate shocks. The passivity of normal times is, occasionally, more than offset
by the brisk response to large—current or accumulated—shaocks. These nonlin-
earities clearly improve the aggregate performance of dynamic investment
equations.

Bath the microeconomic as well as the aggregate implications of the esti-
mated model are largely consistent with the establishment level evidence pre-
sented by Caballero, Engel, and Haltiwanger (1995) for U.S. manufacturing {for
the 1972-88 period). They found evidence of an increasing hazard for the range
of disequilibria where establishments spent most of their time. More impor-
tantly, they also found an unportant role for the cross-sectional density of
capital imbalances in explaining changes in the marginal response of aggregate
investment to aggregate shocks.

In the process of assessing the contribution of the model, we found an
impartant forecasting gain over simple linear models. In almost every year and
sector, and particularly so for structures, the nonlinear model reduced the
mean-squared-error by a substantial amount.

Beyond the current paper, there are three extensions and robustiess issues
warth mentioning at closing: First, the nonlinear model has nontrivial implica-
tions for forecasts’ higher moments. Qur preliminary exploration of this issue
reveals that the standard dewviation, skewness, and excess kurtosis of invest-
ment /capital ratios’ forecasts, are highly correlated with the business cycle.
These relations hint at a promusing structural avenue to explore movements in
forecasts’ higher moments.™

Second, In the working paper version of this paper (Caballero and Engel
(1994)) we allowed for serial correlation in the rate of growth of aggregate
frictionless capital (the v,’s) and found very little of it, which pravides support
for our i.id. assumption in the theory section. Interestingly, the linear (PAM)

* A gaod complement for nonstructural ARCH maodels, for example.
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model we estimated left plenty of unexplained serial correlation, especially for
equipment investment.

Finally, and also reported in Caballero and Engel (1994), we extended the
theory and empirical sections to acknowledge the existence of continuous
“maintenance” investment, which does not require paying sizeable adjustment
costs. We found that while such an allowance was important to obtain a more
realistic distribution of observed changes in capital and average investment rates
(in particular, small changes account for a significant fraction of microeconomic
investment changes), it did not diminish the role of microeconomic lumpiness in
accounting for the dynamic aspects of aggregate investment.

-Dept. of Economics, MIT, E52-252a, 50 Memorial Drive, Cambridge, MA 02139,
U.S.A.; caball@mit.edu; http://web.mit.edu /eaball fwww
and
Center for Applied Economics (CEA), Dept. of Industrial Engineering, University
of Chile, Republica 701, Santiago, Chile; eengel@diiuchile.cl hip://www.dii
uchile.cl feea feengel him

Manuscript received October, 1994; final revision received June, 1998

APPENDIX A.: Dynamic OFTIMIZATION

[n this appendix we study the firm’s stochastic dynamic optimization problem. In Section I we
show existence and uniqueness of the solution to the firm’s Bellman equation. In Section 2 we study
the main properties of the optimal policy functian.

1. EXISTENCE AND UNIQUENESS

From the main text it follows that the Bellman equation—for the firm’s value function normal-
ized by frictionless capital —is given by

oz, w) = max {:rr(z +i)— wmfe i £ 0}

+¢;ffe—“u*(z i+ Az, o ) dF(Az) dG(m’)},

with {i # 0} denoting an indicator function thar takes the value [ when the firm adjusts its capital
stock and zero otherwise.®

The operator associated with the above equation is not bounded fram helow. For this reasan we
add a term to v¥(z, w) that does not depend on the ¢hoice variable and therefore does not affect
the firm’s optimal choice, but does bound the corresponding operator:

(21) Gz, w)=0¥(z, w) + Ewme P,

Substituting (21} into the expression above, using the expression for w(z) derived in Section 2 of
the main text, and performing some straightforward {but tedious) calculations, leads to the Bellman

3 All terms that are not explicitly defined in what follows were defined in Sectian 2 of the main
text.
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equation for {(z, wh

(22} iz, m)= max{c,(m)eﬁz — et + apffe‘lzfl(z + Az, @ VdF(AZ) 4G},

maxu[cgé‘[’“ — et + wffe"‘:f!(u + Az, @'Y AF(Az) G w')} },
with
cflw) =gl +w— $Blef] ),
4= £B.
cy =401 — wEle® 1,

whete p,, denotes the mean of the distribution of the adjustment cost factor G{w).
To show that (22) has a unigque solution we make the following three assumptions and prove the
following two lemmas. The assumptions hold throughout the remainder of this appendix.

AssumeTioN L The adjusument cost facrar, o, i5 bonnded from above by 'w < += and from below
by 0.

AssumeTioN 2t E[e ] = gife "4 dF{ Az} < 1M

ASSUMPTION 3 e, Ble %Y ) = g fe PLdFCAZ) < 1, where p, denotes the mean of the distibu-
tion of w.

LEMMa AL Lef f{z) =k e® —k.e”, with 0< @< 1 and ik >0 Denore 7,y = loglhk A/ /
(1 — B). Then f(2) is increasing for © <z, decreaging for z > 2., and attains its maximum valie, which
isequal to (1 — BY/ B B AL 3B/ 8 ar 2=z,

Praor: Elementary calculus. Q.ED.

Lemma A2 Consider the aperator T defined by posing (TOY z, w) equal 10 the right-hand side
of (22). This operator is defined on the set 5B of all veal-valued, hotnded, comtinuots functions with
domain B x [0, &l

Their T: (i) preserves boundediess, () preserves continuity; and (i) satisfies Blackwell's conditions.

Proor: (i} Consider v €2, bounded from Helow by w and from above by @ Then {(Tu)z, w) is
bounded from above, since

{(Tu¥z, w) = fEle 41 + max{cl(m}eﬁ‘ —c,e%, max{e,e®™ —cje“']}

< fEle” 7|0 + max[c {a)e ™ — cqe”

< WEle~ %0 + £(1— B)(1 + B — E[eA] ) /8,
where the second inequality follows from the fact that, for all w=0, ¢y <¢{w), and the last
inequality follows from Lemma AT,

* In the main text we assume that 4z follows a Normal distribution, with mean &t and variance
a?. Then this condition is equivalent to p> Lo+ lag(y), which for r+ &< 1 cotresponds
approximately to > +o % —r — §. Thus, for the set of parameters we use in the empiricza] section, a
sufficient condition is that p > —0.13 for equipment and g > —0.10 for structures. Both conditions
can be expected to hold.
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That {TuXz, @} is bounded from helaw follows from
(Tul(z, @) 2 yE[e " + max{cl(cu}e'@‘ —¢q8?, max[cjeﬂ‘” —cae }
Ia
2 @Ele 4 + max[c,e B —ope”

— YEle™ % lu+ £ — B)1 — yElef ) p )/ 7

where we used Lemma Al in the last step.

(it} Ta show that the funetion (T is continnous for w55, we note that from (22) it follows that
{Tu) z, e} is the maximum of twa functions, the first inherits continuity from ez, w) and the second
is canstant. It fallows that (Fu) is continuous.

(iii) To show that T satisfles Blackwell’s conditions, we first note that if o ,u, 2%, and
iz, w) = u,(z, @) for all z and «, then the expected value of any positive random variable, in
particular ¢~ 4%, preserves the above inequality. Thus

(Tu Mz, w) = (Tus Mz, 0).

A straightforward caleulation shaws that, for any ¢« €5 and any constant a:
(Tlu+alz,wy={Tulz, )+ &Ele"**]a.

The secand Blackwell condition follows from Assumption 2. 0.ED.

PROPOSITION Al: Equetion (21} has exactly one solution (and this solution belongs ro ).

Proor: It follows from Lemma A2 that T defines a contraction mapping ou the metric space &
{narmed with the sup-norm). The modulus af the ¢ontraction mapping is % Ele™**}. Existence and
uniqueness of a solution ta (22) now follows from the Continuous Mapping Theorem (see, eg.,
Theorem 3.2 in Stokey, Lucas, and Prescatt (1989}, Q.ED.

2 PROPERTIES OF THE QPTIMAL POLICY

We define the following funetians related to the solution of the Bellman equation, 0(z, @),
considered in the preceding section:

(23) Hz)= qﬁffe"“fl(z+Az,m)dF(dz):!G(cu),
(24) Flz)=cyeP —c et + 1{2).

LeEMMa A3 The function J(z) is bounded from above, ie., sup, J(z) is firite. We denote this
Supresann by S

PrOOF: Since & z, w} satisfies Bellman's equatign, we have

{25) E(z,m]=max{§me’3’+J’(z),maxj(u)}_

u

It max, J(z) were not finite, we would have that 4(z, w) is not bounded, contradicting Proposi-
tion AL It follows that sup, Jf(z) is finite. Q0.ED.

LEMMA Ad: The function J(z) Satisfies

(26) lim J(z) =1 Ele~*],
(27) Hm J{z)e ¥ = —¢,.

T+
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Praar From (25) it follows that

lim Mz,e) =17

At
which, from (23), tmplies that

lim F(z)=J,, & Ele™ 5]

T

Expression (26) now fallows fram (24).
Expression (27} holds Lecause of (241 and the fact that /(z] inherits boundedness from
flz, w). Q.ED.

The next result establishes the existence of a curve in {2, wi-space partitioning this space nto two
regions: one where firms adjust their capital stock and another where they temain inactive,

Proeasition A Define
(28) =)= 27~ Fz e BE

Then finms adinst when thelr cument adjusoment cost factor, w, iy smaller than 0z, and remain
: . a5
fnaetive when w > (Ko™

Proor: By equating bath terms on the right-hand side of (23) we abtain

(29) £z =104, MENITNES

max

The inequalities that hold for w larger and smaller than €3(2) fallow trivially. Q.ED.

ProposiTion A3: The finedon £2(z} is analptic on the real line, and therefore ltas devivatives of off
order.

ProOF: From the definition of (Hz) and J(z) (see (28) and (24)} we have that it suffices ro show
that f{z} is analytic. To do this, we note that f{z) may be written as the convolution af a normal
density and a continugus, bounded function:

1(2) = [ Kz + A2) dFCA2),
with

K(z) =[5z, 0) dGw),

d= wE,:r:ﬂ—n.

and dF( Az) is a normal density with mean = — o and variance ¢ (where dF(.4z) is normal
with mean g and variance o °).

That the convolution of a narmal density and an incegrable (in particular, a bounded, continuous)
function is analytie, follaws fram a well known propetty of the exponential family of distributions
(sce Thearem 9 on p. 59 in Lehmann (1986)). O.E.D.

* When @ = £1(z) firms are indifferent between adjusting and not adjusting,
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PROPOSITION Ad: As z fends to — e

(30) £0(2) ~ J {1 — YEle™*7 ]} 07,
and as z tends to =

(31} £0(2) ~ e et — 12

It follows that

{32) I llim {2(z) =,

Praofs: Expression (30) follows from (28) and Lemma Ad4. Expression (31) follows from (27).
Then lim,,, _, , £2(z) = = faliows fram (30), (31}, Assumption 2 and the fact that g < 1. Q.E.D.

PROPOSITION AS: The set & of z € R such thar [z} =1
POiRIs.

max i @ nonempty set with a finite number of

Proor: Continuity of J{z) (it is analytic; see the proof of Proposition A3) and Lemma A4
combined with Assumption 2 ensure the existence of a hounded, closed set # within which J{(z)
attaing its raximum. Continuity of J{z) an the compact set & ensures that the maximum is indeed
attained and therefore & is nonempty. Finally, since J(z} is analytic, we have that its maxima are
isolated, thus showing that & contajns a finite number of elements. Q.ED.

PROPOSITION AG: When adjusting its capital stock, a firm's optimal choice of 7 is any element in 7.
Thus its disequilibriiom after adjusting does not depend on its disequitibrivm before adjusting.

Proor: The result follows from the fact that when the maximum between bath térms in the
right-hand side expression of (25) is attajned at the second term, this expression does nat depend
an z. O.ED.

All caleulations of £2(z) performed while estimating the distribution of the adjustment cost factor
(see Section 3.3 in the main text and Appendix C) led ta a set % with a unique element, ¢, and a
function f2(z) that is decreasing to the left of z=¢ and increasing to the right of z = ¢, therefore
implying an aptimal policy of the (L, ¢, U) type. Yet we have been unable ta show formally that &
has one element (ie., a unjgue return point), and also have not shown formally that, canditional
an e, the firm’s optimal policy is of the (L, ¢, J) type. As the following proposition shows, however,
we can prove that the latter holds in a neighborhood of a return point.

ProposITIaN A7: For (e, z) in a neighborhood of {0, ¢}, the optimal policy is of the (L, ¢,U) type.

Proof: From Proposition A3 it follows that there exists a neighbarhood % of z=¢ such that
J(z) is decreasing to the left of z=¢ and increasing ta the right of z=c. It then follows from
equation (28} that (=) is decreasing to the left of z = ¢ and increasing to the right of z =c. Thus,
for all @ = max, o 2-(fy,, —J(2))e7#2 and z & % we have that the optimal palicy, conditional on
the current adjustment cost factor, is of the (L, ¢, UJ) type. 0O.E.D.

APPENDIX B: AGGREGATION

This appendix is divided into three sections. In Section 1 we establish the exact expression for
agpregate investment and present the results of simulations to assess the quality of the approxima-
tion we use. In Section 2 we study the main praperties of the adjustment hazard. In Section 3 we
characterize the average cross-section of firrn deviations.

¥ We write a(z) ~b(z) as z tends to ¢ if lim, , (a(z) /B(z) = 1.
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The following aperators, defined an the set of prabability measures an the real line, are used i
Sectians | and 3 of this Appendix and in Appendix C.

o SECTORAL {AGGREGATE) SHOCK, o ( ¢ ): shifts a cross-section by 1.

@ ADIUSTMENT sHOCK, #18): applies adjustments determined by the adjustment function charac-
terized by the parameter vector f.

® [DIQSYNCRATIC SHOCK, 7 {a °): canvalves the probability measure with a Normal density with
zero mean and vatiance o .

e FULL C¥CLE OF SHOCKS, 5 (1" + 8, 8, ¢ 1: equal to the combination of the three shocks defined
abave, ie, to Fla 7 (h)e{v+5) Equation {17} in the main text gives an explicit expression for
the cross-section that results from applying 5 to f{x./— 1)

& AGGREGATE [NVESTMENT FUNCTIONAL, 9 Assigns to a cross-section the average mvestment
vate that results after adjustments take place (see equation (12) in the main texth

| AGGREGATE [NVESTMENT

In this section we derive the exact expression for aggregate investment, of which equation £12) is
an approximation. We also assess the quality of this approximation.

Leninia Bl We introduce the following nowedon:
a {,: disequilibrivent immediately before peviod 1 adjnstmene of firn iy
r; o number of periods, a5 of tine 1, since firm § last adjusted;™
1, o1 last thme fivm i odjusted Cequat (o £ — 5 )
ke @ desired tevel of Uog} capital of firm i immediately before 15 Inst adjustment took place;
k, b fism s (log} capital stock immedintely after the last time it adfusted, Note thar k; L=
ki, 4+ and that, as changes in capital since fime 1, | have ondy reflected depreciation, this quamty
:;os;épierca’y eleterminey the cument capital stack.

Then, conditional on 1, ,, we have that & and &, , =~ are independent. That is, condifional on when

the firm lase adjusted, irs cumrent disequilibrium and curvent capital siock are independeit.

-
&
-
L]

Proor: We have that, since £, =&}, — k7, , it depends on shocks (aggregate and idiosyncratic)
that took place during periods £>{; ,. On the other hand, k., depends only an shacks that ook
place at </ ,. Since shocks are Lid., it follows that, conditional on {;,, botl quantities are
independent. Q.ED.

ProeosiTioN Bl Denere

& g, (e} fraction of plants, as of time ¢, that last adftested r periods ago,

o K (x| average capitol stock of plonss with disequilibritem x at éme ¢, that last adjusted v periods
ago;

o E{r) average copiral stack of ol firnis thar lasr adjusted r periods ago;, thus

K'= z w AR (r);

© () average investment, of thne &, of thase thot lasr adjusred 1 periody ago;, thus

ff‘ = 2 ﬂ,(;‘]f,(r)‘,
.

o FE(x|r): erass-section, ar time 1, of plants that adjusted r periods ago; denating
F =8 (e, + &) g},
Z=wr, +8)5a’ )

and & mass painr ar 0 by &, we hope that

£ =05 (8.

7 Incorporating depreciation.
8 possible values are: 1,2,3,....
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Then
=y q,(:-)"ﬁ,(r)f(e--‘ — DA £ (elr) d.
Praoar:
1A =% mrd i)
-3 ﬁ,(r)f(eﬂ' ~ DY AGO R (el EF Celr) dy
= Z ﬁ,(f'}f,(r')f(e""’ = D ACx)f*(xlr) dx,
whete we used Lemma BI in the last step. Q.ED.

[t follows that, to calculate the exact expression for the aggregate investment/capital ratio, we
need to keep track of a sufficiently large number of conditional cross-sections, f,(x|r), and the size
distribution of cahotts, 7 (r). Computationally, this is substantially more burdensome than the
approximation we used. We show numerically, however, that this approximation mostly affects
nujsance {secondary) parameters,

We note that if ¢ denotes the estimated vaiues of the main parameters 3.%% then a linear
transformation of the shocks used when calculating the likelihood still leads to the same main
parameters.*? It follows that a good measure of the guality of the approximation we use is to
determine the extent to which the exact expression comes close to our approximation when we ailow
for a linear change in the aggregate shacks that determine exact aggregate investment.

To implement this idea we considet 50,000 firms with initial capital stock equal to one and
disequilibrium x equal ta zero. All firms beloang to the same sactor. We simulate the evolution of
these firms during 75 time periods, with parameters given by our estimated structural model. We
keep track of the aggregate shocks {(denoted by u,} and our approximation to aggregate investment
(denated by y,” ). Next we rerun the whole process with resealed aggregate shocks (w, = 4 + by, ), this
time keeping track of the exact expression for aggregate investment (y](a, B)). We find the values of
« and & for which the series yI{a, k) is closest to y*. To measure proximity between both sertes we
consider two criteria, both of them applied to the last 45 observations of both series:

MS{yTta, b) — ')
Ri=f-— - 27
Var(y )
Var(yTla, by — /)
Var{y/*)

a

1

where MS(y,) denotes the average of the squares of the corresponding series and var(y,) its
variance. These measures capture the fit of a regressian of ¥7 on 7, differing in whether they allow
at not for an additive constant term.*! Table VI shows the results of our simulations. It is apparent
that the excellent quality of the fit we obtained justifies approximating aggregate investment by (12).

* There are three of these parameters in both estimation approaches we use. In both cases we
have a free constant. The two remaining parameters chatvacterize the distribution of adjustment
costs  the structural case and the adjustment hazard in the semistructural case.

0 This follows from the expression derived for the likelihood (see Appendix C).

*'It is arguable which criterion is more adequate in our case. On one hand, we allow for an
additive constant term when estimating our models; on the other hand, it did not vary across sectors,
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TABLE VIII
ASSESSING THE APFROXIMATION FOR AGGREGATE INVESTMENT

Equipment Stractures
g 4.014 1.603
b 1.054 1.080
R} 1,980 0.995
i -0.019 —{.005
b 1225 L145
R 0996 (.999

2. ADIUSTMENT HAZARD
In this section we study the prapecties of the adjustment hazavd:
Myy=G{Or+el).

where ¢ is a fixed element (say the smallest one) in the set 2 characterized in Propasition AS.

Assumetion 40 The disribution function G has o continous densing gle) with suppors [0, @],
w <,

ProposiTian B Under Asswnpions 1, 2, ond 3 miede in Appendic A we have that the adjnsanent
hazerd satisfles ’

@b tmy, . Mud= [ Flothermore, there exisis o positive eonstane M suclt that for |xl> Mve flare
Alry= L

(bt ALt is differeniable ar all v and

Mayd =gl Mo+ {v+eh.

Proor: {a} This fallows inutnediately trom Proposition A4 and Assumption 1.
(b} It fallaws from the fact that A{x) 1§ the compasition of two differentiable functions and
therefore differentiable {see Praopasition A3). O£,

a

J. INVARIANT DISTRIBUTION

Due to the presence of aggregate shocks, the distribution of disequilibria that determines
aggregate investment (see Section 2.3 of the main text) has na invariant disiribution. Tn Caballero
and Engel (19920} we establish that, in a well defined sense, the average over all possibie trajectaries
of aggregate shocks of the erass-sectian of deviations is equal to the invariant distribution faced by
an ndividuat firm.* [n this section we show that such a distribution exjsts and that convergence
toward it takes place at an exponential rate.

The following aperataors, all of which are defined an the set 5% of prabability densities on the real
ting, will be useful throughaut this section.

@ We lat 7 =o/( w+ 15(a 1708 and F7 =208 w u+ 51.5(a”), where p denotes the
mean of apgregate shocks. & the depreciation rate, o the sum of the varjance of aggregate and
idiosyneratic shocks, and 8 the set of parameters eharactevizing the funetion A{v) = GO r + o)k
The aperators .+, 7, and .7 were defined earlier jn this Appendix. For any integer i > | we denote
by 5 the n-fald composition of 7, F = 72

A . Lo - . -
** Thus the aggregate shock (s constant and equal to g and the idiosyneratic shack is Narmal with
zero mean and variance o’ = g + a.”.
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e We denote by #°(f) the function that associates to f the fraction of firms that adjust when
applying ;.

& We denote by Z,_ | the operator that associates to an initial density f the cross-section of
firms that have not adjusted after {x — [} shocks, normalized to one.

We assume throughout that shocks are Normai. The following lemma is needed to establish the
main result of this section.

Lemma B2 Given a cross-section fy, let f, =F7°(fy). Denote by m{f,) the probability that a
particular firm adjuses at time n, conditional on not having adjusted during the first n — 1 periods, and
denote by 1,{ fi} the fraction of firms that do not adjust during the first n periods. Then there exists a
constant o € (0, 1), camman to all initial crass-sections, such that:

(33) mlf) 21 -a,
(34) n(fo) <@,

Proor Dengte by #,_, the set of all densities that may represent thase firms that have nat
adjusted after (n — 1) shocks. Since F,_ | CF and m(f)= = (&, (f)), we have that

inf w{fi= inf ¥(g)
e 2e¥,

inf Z'(f}
_(lenﬁ‘ /

v

1

inf m,(f)
s £

Hence a lower bound for #, also is a lower bound for =, n > 1.

Next note that it follows fram Propasition B2 that there exists a constant M such that A(x)=1
for |x| > M. Denote by A*(x) the adjustment hazard that is equal to one when x| > M and equal to
zera elsewhere. It is easy to see that both 7,(f;} and 1 — =,(f;} corresponding o this adjustment
hazard are larger than or equal to the corresponding quantities for the ariginal hazard. Thus it
suffices to prove (33} and (34) for A*(x) and, in the case of (33}, for n=1.

Applying the operator & to a mass point at x, &, we have that the value of x for which the
fraction of firms that does not adjust is largest, is the value such that the distribution before
adjustment is narmal with zero mean and variance o2,*3 and this fraction is « = 20{M /o) — 1,
with 0 < @< 1 and € denating the c.d.f. of a standard Normal. [t follows that for any density f{x)
the fraction that does not adjust after applying &3 is bounded from above by «. Hence 7, = 1 — a.
Finally, given any crass-section fi{x), we have that ,(f;) = [T}_ (1 — 7,0 fy N, which is bounded
from above by o G.ED.

PROPOSITION B3: Given an arbitrary initial cross-section, fy, let f. =F*(f,). Also, define the
sequence {f7) as above, but for the particular case where fy is a mass poing ar x = 0.

Let 7l denote the probability that o fem that starts off at x = adfusts at time n, conditional on not
hauing adjusted during the first n — 1 periods.

Denate

- 24l ~ =)
1+ T, M4 - =]’

Pi

and define f5(x) = T, op:fF(x} Then f, converges to f° in the variation distance and convergence
takes place at an exponential rate.

* Since PUM~x)/o)~ D ~M—x)/a) is maximized at x=1.
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ProoF. We cansider first the case where f; = &,.

At any moment in time, £7 can be partitioned inta groups of firms that last adjusted the same
number af periods ago. Hence f7 is a couvex combination of f§, f7,..., £l

The weights on the ahove densities can be determined by the one-to-one correspondence with the
Markov process with state space %= (0,1,2,3,...}, and transition kernel:

Plye)=0- 17-1‘)6&.!'—] + 8y

where & ;= [ if { =7 and zero otherwise. State 5 leads to s + 1 (not adjusting) or to 0 {adjusting).
The corresponding probabilities are 1 — #, and .

It follows from Lemma B2 that the above pracess satisfies Condition M in Stakey, Lucas, and
Prescott {1989, p. 348). Indeed, with the notation of these authors we have that there exists M =1
and e=max{e, | — &) > 0, with @ defined in the preceding lemma, such that for all subsets 4 of 5:

max(P (s, A), Pls, A)) = €,

since

. ! {0, s+ 1l cdor{d, s+ 1} CAS,
max( P\ (s, A}, Py(s, A7) = «, . } ; }
max(a,, I — o) atherwise,
and from Lemma B2 we have max(m,, 1 — 7,) = ¢ for all 5.
Hence Theorem 11.12 in Stokey, Lucas, and Prescatt (1989, p. 350) implies that there exists an
invariant distribution, £, and a constant & ={(1 — ¢) < 1, such that

35) fe —fell = G —Feln

Furthermare, ¢ is the unique fixed point of the Markov operator. The latter and a straightforward
caleulation show that f€ =X, p, f2
Extending this results to the general case where fy can be arbitrary is straightforward. All firms
eventually adjust and, once they adjust, the previous case applies {sinee they adjust to x = {).
Given an arbitrary f; we may write

Frfgl =1L ﬂu!b—'”ﬂ(ﬁfl V7 a0,

where f7 s a convex combination of ff,f7,..., £, g, could be any cross-section, and 7, is
defined in Lemma Bl

From Lemma B2 and the fact that the variation distance is hounded from above by | we have
that there exists e < (0, 1) such that

L&y = Fll = (L = 7, W NF 28D = FolI+ 7,
< GJJ/E“JFU _fa” + au/l_
Convergence follows by letting # tend to infinity, the vate at which convergence takes place is

geometric, being at least as fast as max(yG , L/E ). OED.

APPENDIX C.: ECONOMETRICS

This appendiz is divided into two sections. In Section 1 we derive the likelihood funetion and
sketeh the general approach used for calculating this function at given parameter values. In Section
2 we describe implementation details for the semistructural {Section 2.13 and structural (Seectign 2.2)
cases.
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[. CALCULATING THE LIKELIHOGD FUNCTION
1.1. An Expression for the Likelihood

The sources of randomness (“error terms”} are the sectoral (aggregate) shocks, ie., the o's,
where i=1,...,f and r=1,...,7.%¥ We assume that sectaral shacks are Normal and independent
over time, and denote the mean and variance of these shocks in sector £ by g, and ¢, respectively,
The (calumn) vectar of sector s aggregate shocks is denated by I, I denotes the column vectar
with I, followed by I, and sa on, and g, = E[]. We allow for contemparaneous correlation
among shocks from different sectors;, the matrix < =[c‘-}.] denotes the carresponding covariance
matrix (which does nat vary over time).

Standard change of variable calculations lead to the following expression for munus the log
likelihaod:

—log. lik. = canst + z log

i

Ay, T 1 ,
—1|+ Elog|C|+ E(V—#V)(C‘l ® L)1 — gy},

"

where 4 @ B denotes the Kranecker produet of matrices 4 and B and y, = I, /K, Concentrating
the likelihood with respect to C and g, leads ta

é}"a'.r

Ju

i

(36) —log. lik = const + 3 log

it

+Tl ‘(V_ﬁ-u)(V“ﬁ-V}‘
VN IR S i
208 T ’

where :!:[: corresponds to the vectar of sample means. That the Jacobian is well defined follows from
Proposition B2,

Caleulating the likelihoad in {36) requires caleulating the sectoral shocks (the o, ’s) and the
corresponding partial derivatives (the oy, /oy, 's). Next we show that, conditional o the initial
cross-section and the set of parameter values, the relation between sectaral shocks and sectoral
investment rates is invertible. Our proof is constructive: it describes how the sectoral shocks are
actually caleulated for given pararneter values.

1.2, Calerdating the Components of the Likelihood

Suppase we know the crass-sections of disequilibria in every sector at time ¢ = 0. It follows from
the aggregate dynamics in our model that the observed capital-investment ratio in the ith sector
during periad ¢ is determined by the aggregate shocks in the first ¢ periods (see equations (15), (16),
and (18)k

(37 Yir = Vil U a0y 1y, £CL00) (=1,....f).

Furthermore, aggregate investment is a function of only the current aggregate shack and the
cross-section prior to this shack:

(38) v =3, G — 1)

(39) = [@u, +8—x) A =1, — 8)f(x,e— 1) dx,

* By working with a continuum of firms we have that, despite the presence of idiosyneratic and
adjustment shocks at the micro level, the only saurce of sectoral randomness are aggregate shocks.
That is, the cross-section that results after adjustments is uniquely determined by the adjustment
function and the cross-section prior to adjustments. Alsq, the cross-section that results after the
idiosyncratic shocks is the canvolution of the density {(common across plants and sectots) from which
these shacks are drawn with the cross-section prior ta the shock. See equations (13} and (16) io the
main text for the corresponding formulas.
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where in gur case ¢(u)=¢" — 1 but, more generally, in the derivation that foilows ¢(u) could he
any smooth and strictly increasing function with ¢(0) = (. The derivative of the above expression
with respect to vy, evaluated at 1 is equal to

vy
L= D) = [l e+ a-2) Ale— 0 - 8)
c]LJ” L
+dlo+ -l Ay —v—8)flx.r— e
Recalling that f{x,¢) denates the cross-section immediately after period ¢'s sectoral (and deprecia-
tion) shocks, we have that
¥

o ir

(40} (fle—1)0,) = f[cb‘(—..v.')_-l.(_t] — gl —x) ACx)]f e, — 1) de.

It follows from our assumptions on ¢ and the fact that €{x) is decreasing for negative » and
increasing for positive x (the “increasing hazard” property) that the above derivative is strietly
positive when fi(x,r — 1) has support equal ta the real line (as in our case). Thus ¢, is uniquely
determined fram (38):

(41) Yy ™ I-'H(yiuff(" t—1))
(42) =0, (¥t a0y g 00D,
and proceeding mnduetively we canclude that

= I'!J'r(."'lr'.r‘jla'\l— [ae- ‘yri’ﬁ'(l‘O}}‘

5,

It fallows that, eonditional an the initial eross-seetions, the 1,’s are uniquely determined by the y;, s

1.3, Jnitial Crogs-sections

The mitial cross-section in sector § is set equal to the invariant prohability measure of the
unconditional process describing the evolution of disequilibria for an individual plant in that
sector.® This is the cross-section obtained when averaging over all possible sample paths of
aggregate shocks.*

Although this selection is arbitrary, we checked the robustness of our results by studying the
convergence properties of the eross-sections distributian near our initial distribution. We compared
the sequence of cross-sections used in our likelihood calculations with thase obtained when we
perturbed the mean of the invariant-initial distribution hy one standard deviation of the average
{across sectors) aggregate shocks. The Markov structure of our prablem, combined with the
contractionary features derived 1 Appendix A, ensure that for any given sequence of aggregate
shacks, the distance between both cross-sections tends to zero over time with probability one: the
issue is how fast one distribution converges to the other. Simuolations showed that, for the parameter
vatues considered, the distance between both sequences of cross-sections becames negligible
(variation distance less than 0.00) sometime between the second and third cross-section after the
initial one.*” For this reason, we discarded the first three abservations for all series when calculating
the likelihood.

# By unconditional, we mean that we do not condition on actual sectoral shocks. For this reason
the variance of shocks relevant for this distribution is the sum of the variances of sectoral and
idiosyncratic shocks. In Appendix B.] we show that if F; denotes the probability measure describing
a particular plant's deviation at time ¢ =90, and F, the carresponding probability measure r pertods
later, then F, converges in the variation distance to a distribution F* which does not depend an the
initial distribution Fy.

# See Caballero and Engel {19%92h} for a proof.

" The parameter on which convergence depends maost 15 the variance of diosyneratic shocks,
caonvergence is faster as this parameter becomes jarger.
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1.4, Suntmary

Given a set of parameter values, we calculate the likelihood in (36) as follows:

[. The initial cross-section of firms” disequilibria {one for each of the 21 two-digit manufacturing
sectors cousidered} are set equal to the invariant distribution faced by an individual plant. These
crass-sections are depoted fi{x,0) i=1,...,21.

2 Forr=1taT:

(a} Salve (38) ta find ry,, i=1,...,21.

(b} Calculate 9y, /du;, from (40).

{) Determine the next set of cross-sectians of disequilibria (the f{- +¥s) based upon (15}
and {16).

The next section provides the details on exactly how every one of the steps abave is conducted in
hoth estimation approaches (semi-struetural and structural).

2. IMPLEMENTATION
2.1, Semti-structural Approach

This approach estimates the adjustment rate function directly, We assume that the adjustment
rate function is common across sectors and of the form:

(43) Alx) =1 =g tem bt

with iy =0 and A, = (. We estimate three parameters (besides the mean and variance-covariance
matrix of aggregate shocks): Ay, Ay, and an additive constant {comman aeross sectors),

Estimating the Initial Cross-sections

In what follows, we do not make any assumptions about the mean of the aggregate shock. If we
knew this mean, or could estimate it directly from the observed data, then we eould determine the
invariant density by caleulating the invariant probability function of a standard-fixed Markov chain
(see Caballero and Engel {1994) for details).

To compute the initial cross-sectian we proceed as follows, Far sector § we let g(x, 0) denate a
Norma! density with zeto mean and variance of = g +¢,. We set ¢, equal to 0.035 for all
sectars.® Given g:lx, 7— 1) we caleulate g (x, r) by first salving for ¢ in

FlAF(hg, M) (e + 8)gdx, r— 1) =T,

where ¥, denates the average capital-investment ratia of sector i The solution is denated by u,.
Then we set

gilx, 7)) =F; + 8, Ag, Ay, ogdg e, r— 1L

As 7 grows, g,(x, 7) approaches the unconditional invariant density for an individual plant, and
1, approaclies 4 constant consistent with the mean of sectoral investment /eapital ratio. We use this
density as the initial crass-section when calculating the likelihood. Simulations showed that using 30
iterations (for each sector) was sufficient for ali practical purposes.

* There are two reasons far fixing ci;» First, 1t avaids estimating an additional nonlinear
parameter. Second, since we may expect that the variance of idiosyneratic shocks is significantly
larger than the variance of aggregate shocks, the value of the latter is of little relevance when
determining the adjustment function and the invariant densicy. :
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Caleulating the Likeliliood

The family of adjustment functions with which we work has the attractive property that the
evolution of the cross-sections can be tracked efficiently using a convex combination of a small
aumber of Normal densities, thus reducing computational time substantially. To see this, we show
next that if we assume that f;(x,r — 1) is a convex combination of & Normal densities, then fi{x,r)
is a convex cambination of & + 1 densities. We also derive simple expressions to update the means,
varianees, and weights assigned to the Normal densities characterizing fi{x.1).

Consider first the case N =1 and assume f(x,r — 1) is Normal, with mean p and variance a7
A simple but tediaus caleulation shows that solving (38) reduces to solving for 1, In

T ;

(44) p, —eftratdi_ g Zamdte a1k pa et 61

1 E

! T
where

1
4 a
1+ 2.&10’] ’

1
clo)=0—pu+ 502,

72 5
dlu) = Ay + —5 4,00 — p).
P

The partial derivative in (40} is equal to
ay, L 7! i 7? .
{45) LAt F U R Ly ) 2haly, + 8- ;L)—1[e‘“"'1”“—y,-, -1
s ot a”

It follows from equation {17} in the main text that the cross-section density after the ¢th period's
sectaral (aggregate), hazard and idiosyneratic shocks, fi{-, 1), is a convex combination of two Normal
densitics, one of them with mean n={gx—u, ~ 8}/ + 2&251) and variance 7° + (rf, and the
ather with zero mean and varianee g,2. The former carresponds to those firms that did not adjust,
the latter to those that adjusted their capital stock. The fraction of firms in the group that does not
adjust is

T { —U-—rﬁ']j 52
(46} K=—exp —»\Od—iﬂ—r%—ﬁﬂ[—g - 1]
a

2a” o

[n the more general case, where f{x,e—1)= T8 o, f*(x,¢— 1} is a convey combination of N
Normal densities, 1;, is obtained by solving an equation analogous to {44 with a linear combinatian
of terms like the one on the right-hand side of that equation:

Vi = Zaquﬁ(t}r-r +F—r)ACx — 1y, — 81 (x, 0 — v
k

The partial derivative is equal ta a convex combination of terms like those in (45). We also have that
flx, 1} will be a convex combination of N+ 1 Noarmal densities. Each of these crass-sections
corresponds to a specific cohort, grouping plants that have not adjusted for the same number of
periods. The “older” cross-sections are more spread out than the “younger™ ones and have lost mass
manotonically due to the adjustment of their members. Simulations showed that keeping track of 30
densities is extremely conservative: the impact on aggregate investment of cohorts much older than
30 years is negligible. For this reason, in every period we merge the two oldest cohorts inta one
Normal density with mean and variance equal to thase of the canvex cambination of the densities
being merged.
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22 Soucnwal Approach

Instead of estimating the adjustment function directly, as in the semistructural case, here we
estimate the parameters of the distribution of adjustment costs and obtain the adjustment function
from the solution of the dynamic optimization problem described in Section 2.

The initial distribution is calculated in a way analogous to the semistructural case. Adjustment
costs are drawn from 2 Gamma distribution:

G(w) = [Tnpmiemn/0dy,
{

1
Gl (p)

which has mean g, =p¢ and coefficient of variation cv, = l/ﬁ, Agamn, we estimate three
parameters (besides the means and variance-covarjance matrix of aggregate shocks): p , ev, , and an
additive constant {commaon acrass sectors),

Addjustment Function

The adjustment function for a given set of parameters is obtained by solving numerically the
stachastic dynamic optimization problem described in Section 2. For this purpose—but not when
evaluating the likelihgod from the shocks and Jacobian terms—we disregard sectoral differences in
ty and g, and assunie the parameters that determine the adjustment function (g, v, , a., », 8,
B, in addition to x, and a,) are common across sectors. This allows us to calculate only one
adjustment funetion and use it for all sectors.

We use a grid of 800 equally spaced points on the interval [—3.5,3.5] to determine the value
function via value iteration.* The corresponding steps, for which extensive simulations shawed that
10 iterations were sufficient, are;™ '

-

L’“(Z)= ?T(Z)+J,£IE[E_J:{U”_[(Z+£IZ}+§€'G{‘_+J‘”fﬂ”_'(:+""Z)G(m)d_m}],
4]

¢, = argmax(u,{2]),
nn(z} = g_]e_'@7[t?“(c'“) - UJJ(Z)]‘

The distribution of Az is Normal with mean [n(] — §) and variance equal to the total variance faced
by an individual fim (g = 4" + 02). When calculating ¢, we interpolate with a quadratic
polynomial the value function ¢,(z) at the three points on the grid where the function is largest, and
set ¢, equal to the argument of the maximum value of this polynomial. By doing this maximization
aver a smoathed function, we avoid having to work with a discontinuous likelihood function.

We set the mean of the aggregate shocks equal to the mean estimated with the semi-structural
approach.’!

# Using 200 points makes no significant difference; we used 800 because the additional time
invalved was small. The reason why we need at least 200 points is that we fix the grid of possible
values of x (between —13.5 and 3.5) in advance, so that often a significant part of this interval
becames irrelevant (the hazard is almost equal to one an it). Also, the finer the grid, the closer we
can get to the case where the adjustment hazard looks like that of an (S, 5) policy.

%0 See Seetion 2.2 for the derivations,

! We ser this value ex-ante ta avoid having to estimate additional nonlinear parameters. Because
of the nonlinear adjustment term ¢{v,, + & — xJ in equation (38), there is no simple way to obtain an
estimate of this drift from the data. Also note that, as described earlier, when calculating the
invariant density of firm deviations, we allow for a firm-specific mean that is approximately equal to
the observed mean of the corresponding sector.
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Family of Adjustatent Frenctions

The adjustment function estimated via dynanic oprimization is evaluated on a grid of 800 points.
This makes it computationally infeasible to solve the 943 noulinear equations needed to calculate
the v ’s in every evaluation of the likelihoad. For this reason we wark with a family of adjustment
functions characterized by only a few parameters and such that the derivatives needed for the
Jacohian terms do not need ta be caleulated numerically.

Experimentation with a variety of distributions of adjustment costs showed that the family of
cantinuous, piecewise inverted Normal adjustment functions approximates well the adpustment
functians obtained wia vatue iteration. Three picces suffice far most practical purpases, with the
middle piece equal to zero. A representative member of this four parameter family is of the form

e e N TR T
(47 AMrl=10 ifr zr=y?,
L_e—.\“l.r—.rﬂ: it

We approximated the positive (x> () and negative (x < () arms of the adjustment function
ohtained via value iteration separately. We determined x* and A% by impasing that the approxima-
tian matches the function obtained via value iteration at the (positive]l points where the hazard
equals (1.25 and 0.75. We abtained 1+~ and A~ imposing an analogous conditian far negative values
of x.

Calendaring the v)'s and the Comesponding Devivatives

When keeping track of the cross-section of deviations, we approximate f,{-.7 — 1) hy 33 mass
paints an a grid of equally spaced points (we discuss why we chiose 33 points shortly). We salve for ¢
in N

FLAFOAT A 0T T kel + By~ L =gy
The partial derivatives are caleulated from (400, Next fi(x,¢) is obtained from
fla ey =5, + 8,07, AT a7 et Ml e~ 1,

The aperator adiy, + &) is implemented by shifiing the 33 mass points describiing fi{-.r ~ 11 by
r, + & The adjustment operator, 7, is applied nest. feading to 34 mass points (one at each point
where there was mass before adjustments and a new mass at zerok if v is a point with mass mix) on
the pre-shock grid, then after the adjustment shock we have mass ([ — AlxMm{v} at v and mass
Alxim{x) stemming from this poine at zer.

Finally the idiosyncratic shock takes place: each of the 34 mass points beeomes a Narmal deasity
with mean equal to the paint where the mass was |ocated and standard deviation g,. The resulting
density is computed at 33 equally spaced points on [, — 40, w;, + 4, ], where g, and a7 denote
the mean and variance of the crass-section ohtained after the jdiosyncratic shock ™ We work with a
dynamic grid to reduce the number of points needed to track the eross-section. Simulations showed
that 33 paints on a grid of width equal to § standard deviations, centered avound the mean, suffice to
ahtain accurate estimates.
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